ff.PK.1.comp.oral.md.KE {PopED} | R Documentation |
Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using KE.
Description
This is a structural model function that encodes a model that is
one-compartment, oral absorption, multiple bolus dose, parameterized using KE.
The function is suitable for input to the create.poped.database
function using the
ff_file
argument.
Usage
ff.PK.1.comp.oral.md.KE(model_switch, xt, parameters, poped.db)
Arguments
model_switch |
a vector of values, the same size as |
xt |
a vector of independent variable values (often time). |
parameters |
A named list of parameter values. |
poped.db |
a poped database. This can be used to extract information that may be needed in the model file. |
Value
A list consisting of:
y the values of the model at the specified points.
poped.db A (potentially modified) poped database.
See Also
Other models:
feps.add.prop()
,
feps.add()
,
feps.prop()
,
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
Other structural_models:
ff.PK.1.comp.oral.md.CL()
,
ff.PK.1.comp.oral.sd.CL()
,
ff.PK.1.comp.oral.sd.KE()
,
ff.PKPD.1.comp.oral.md.CL.imax()
,
ff.PKPD.1.comp.sd.CL.emax()
Examples
library(PopED)
## find the parameters that are needed to define in the structural model
ff.PK.1.comp.oral.md.KE
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
## -- parameter definition function
parameters=c( V=bpop[1]*exp(b[1]),
KA=bpop[2]*exp(b[2]),
KE=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1],
TAU=a[2])
return( parameters )
}
## -- Define design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.md.KE,
fg_fun=sfg,
fError_fun=feps.add.prop,
groupsize=20,
m=2,
sigma=c(0.04,5e-6),
bpop=c(V=72.8,KA=0.25,KE=3.75/72.8,Favail=0.9),
d=c(V=0.09,KA=0.09,KE=0.25^2),
notfixed_bpop=c(1,1,1,0),
notfixed_sigma=c(0,0),
xt=c( 1,2,8,240,245),
minxt=c(0,0,0,240,240),
maxxt=c(10,10,10,248,248),
a=cbind(c(20,40),c(24,24)),
bUseGrouped_xt=1,
maxa=c(200,40),
mina=c(0,2))
## create plot of model without variability
plot_model_prediction(poped.db)
## evaluate initial design
FIM <- evaluate.fim(poped.db)
FIM
det(FIM)
get_rse(FIM,poped.db)