a_line_search {PopED} | R Documentation |
Optimize using line search
Description
The function performs a grid search sequentially along design variables. The grid is defined by ls_step_size.
Usage
a_line_search(
poped.db,
out_file = "",
bED = FALSE,
diff = 0,
fmf_initial = 0,
dmf_initial = 0,
opt_xt = poped.db$settings$optsw[2],
opt_a = poped.db$settings$optsw[4],
opt_x = poped.db$settings$optsw[3],
opt_samps = poped.db$settings$optsw[1],
opt_inds = poped.db$settings$optsw[5],
ls_step_size = poped.db$settings$ls_step_size
)
Arguments
poped.db |
A PopED database. |
out_file |
The output file to write to. |
bED |
If the algorithm should use E-family methods. Logical. |
diff |
The OFV difference that is deemed significant for changing a design. If,
by changing a design variable the difference between the new and old OFV is less than |
fmf_initial |
The initial value of the FIM. If |
dmf_initial |
The initial value of the objective function value (OFV).
If |
opt_xt |
Should the sample times be optimized? |
opt_a |
Should the continuous design variables be optimized? |
opt_x |
Should the discrete design variables be optimized? |
opt_samps |
Are the number of sample times per group being optimized? |
opt_inds |
Are the number of individuals per group being optimized? |
ls_step_size |
Number of grid points in the line search. |
Value
A list containing:
fmf |
The FIM. |
dmf |
The final value of the objective function value. |
best_changed |
If the algorithm has found a better design than the starting design. |
xt |
A matrix of sample times. Each row is a vector of sample times for a group. |
x |
A matrix for the discrete design variables. Each row is a group. |
a |
A matrix of covariates. Each row is a group. |
poped.db |
A PopED database. |
See Also
Other Optimize:
Doptim()
,
LEDoptim()
,
RS_opt()
,
bfgsb_min()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
,
poped_optim()
Examples
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(prop=0.01,add=0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0.01,
maxxt=120,
a=c(DOSE=70),
mina=c(DOSE=0.01),
maxa=c(DOSE=100))
############# END ###################
## Create PopED database
## (warfarin model for optimization)
#####################################
# very sparse grid to evaluate (4 points for each design valiable)
output <- a_line_search(poped.db, opt_xt=TRUE, opt_a=TRUE, ls_step_size=4)
## Not run:
# longer run time
output <- a_line_search(poped.db,opt_xt=TRUE)
# output to a text file
output <- a_line_search(poped.db,opt_xt=TRUE,out_file="tmp.txt")
## End(Not run)