ofv_fim {PopED} | R Documentation |
Evaluate a criterion of the Fisher Information Matrix (FIM)
Description
Compute a criterion of the FIM given the model, parameters, design and methods defined in the PopED database.
Usage
ofv_fim(
fmf,
poped.db,
ofv_calc_type = poped.db$settings$ofv_calc_type,
ds_index = poped.db$parameters$ds_index,
use_log = TRUE,
...
)
Arguments
fmf |
The FIM |
poped.db |
A poped database |
ofv_calc_type |
OFV calculation type for FIM
|
ds_index |
Ds_index is a vector set to 1 if a parameter is uninteresting, otherwise 0.
size=(1,num unfixed parameters). First unfixed bpop, then unfixed d, then unfixed docc and last unfixed sigma.
Default is the fixed effects being important, everything else not important. Used in conjunction with
|
use_log |
Should the criterion be in the log domain? |
... |
arguments passed to |
Value
The specified criterion value.
See Also
Other FIM:
LinMatrixH()
,
LinMatrixLH()
,
LinMatrixL_occ()
,
calc_ofv_and_fim()
,
ed_laplace_ofv()
,
ed_mftot()
,
efficiency()
,
evaluate.e.ofv.fim()
,
evaluate.fim()
,
gradf_eps()
,
mf3()
,
mf7()
,
mftot()
,
ofv_criterion()
Other evaluate_FIM:
calc_ofv_and_fim()
,
evaluate.e.ofv.fim()
,
evaluate.fim()
Examples
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(prop=0.01,add=0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0.01,
maxxt=120,
a=c(DOSE=70),
mina=c(DOSE=0.01),
maxa=c(DOSE=100))
############# END ###################
## Create PopED database
## (warfarin model for optimization)
#####################################
## evaluate initial design
FIM <- evaluate.fim(poped.db)
FIM
get_rse(FIM,poped.db)
det(FIM)
ofv_fim(FIM,poped.db,ofv_calc_type=1) # det(FIM)
ofv_fim(FIM,poped.db,ofv_calc_type=2) # 1/trace_matrix(inv(FIM))
ofv_fim(FIM,poped.db,ofv_calc_type=4) # log(det(FIM))
ofv_fim(FIM,poped.db,ofv_calc_type=6) # Ds with fixed effects as "important"
ofv_fim(FIM,poped.db,ofv_calc_type=6,
ds_index=c(1,1,1,0,0,0,1,1)) # Ds with random effects as "important"
ofv_fim(FIM,poped.db,ofv_calc_type=7) # 1/sum(get_rse(FIM,poped.db,use_percent=FALSE))