optimize_n_rse {PopED} | R Documentation |
Optimize the number of subjects based on desired uncertainty of a parameter.
Description
Optimize the number of subjects, based on the current design and the desired uncertainty of a single parameter
Usage
optimize_n_rse(
poped.db,
bpop_idx,
need_rse,
use_percent = TRUE,
allowed_values = seq(poped.db$design$m, sum(poped.db$design$groupsize) * 5, by =
poped.db$design$m)
)
Arguments
poped.db |
A PopED database. |
bpop_idx |
The index number of the parameter, currently only bpop parameters are allowed. |
need_rse |
The relative standard error (RSE) one would like to achieve (in percent, by default). |
use_percent |
Should the RSE be represented as a percentage (T/F)? |
allowed_values |
A vector of the allowed total number of subjects in the study. |
Value
The total number of subjects needed and the RSE of the parameter.
Examples
# 2 design groups with either early or late samples
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
},
fError_fun=feps.add.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(0.01,0.25),
xt=list(c(1,2,3),c(4,5,20,120)),
groupsize=50,
minxt=0.01,
maxxt=120,
a=70,
mina=0.01,
maxa=100)
# plot of the design
plot_model_prediction(poped.db)
# the current RSE values
evaluate_design(poped.db)$rse
# number of individuals if CL should have 10% RSE
optimize_n_rse(poped.db,
bpop_idx=1, # for CL
need_rse=10) # the RSE you want
[Package PopED version 0.6.0 Index]