evaluate_fim_map {PopED} | R Documentation |
Compute the Bayesian Fisher information matrix
Description
Computation of the Bayesian Fisher information matrix for individual parameters of a population model based on Maximum A Posteriori (MAP) estimation of the empirical Bayes estimates (EBEs) in a population model
Usage
evaluate_fim_map(
poped.db,
use_mc = FALSE,
num_sim_ids = 1000,
use_purrr = FALSE,
shrink_mat = F
)
Arguments
poped.db |
A PopED database |
use_mc |
Should the calculation be based on monte-carlo simulations. If not then then a first order approximation is used |
num_sim_ids |
If |
use_purrr |
If |
shrink_mat |
Should the shrinkage matrix be returned. Calculated as the inverse of the Bayesian Fisher information matrix times the inverse of the omega matrix (variance matrix of the between-subject variability). |
Value
The Bayesian Fisher information matrix for each design group
References
Combes, F. P., Retout, S., Frey, N., & Mentre, F. (2013). Prediction of shrinkage of individual parameters using the Bayesian information matrix in non-linear mixed effect models with evaluation in pharmacokinetics. Pharmaceutical Research, 30(9), 2355-67. doi: 10.1007/s11095-013-1079-3.
Hennig, S., Nyberg, J., Fanta, S., Backman, J. T., Hoppu, K., Hooker, A. C., & Karlsson, M. O. (2012). Application of the optimal design approach to improve a pretransplant drug dose finding design for ciclosporin. Journal of Clinical Pharmacology, 52(3), 347-360. doi: 10.1177/0091270010397731.
Examples
library(PopED)
############# START #################
## Create PopED database
## (warfarin example)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define model, parameters, initial design
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(prop=0.01),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
a=c(DOSE=70))
############# END ###################
## Create PopED database
## (warfarin example)
#####################################
shrinkage(poped.db)