add.10x.image |
Add image data to iCellR object |
add.adt |
Add CITE-seq antibody-derived tags (ADT) |
add.vdj |
Add V(D)J recombination data |
adt.rna.merge |
Merge RNA and ADT data |
bubble.gg.plot |
Create bubble heatmaps for genes in clusters or conditions. |
capture.image.10x |
Read 10X image data |
cc |
Calculate Cell cycle phase prediction |
cell.cycle |
Cell cycle phase prediction |
cell.filter |
Filter cells |
cell.gating |
Cell gating |
cell.type.pred |
Create heatmaps or dot plots for genes in clusters to find thier cell types using ImmGen data. |
change.clust |
Change the cluster number or re-name them |
clono.plot |
Make 2D and 3D scatter plots for clonotypes. |
clust.avg.exp |
Create a data frame of mean expression of genes per cluster |
clust.cond.info |
Calculate cluster and conditions frequencies |
clust.ord |
Sort and relabel the clusters randomly or based on pseudotime |
clust.rm |
Remove the cells that are in a cluster |
clust.stats.plot |
Plotting tSNE, PCA, UMAP, Diffmap and other dim reductions |
cluster.plot |
Plot nGenes, UMIs and perecent mito |
data.aggregation |
Merge multiple data frames and add the condition names to their cell ids |
data.scale |
Scale data |
down.sample |
Down sample conditions |
find.dim.genes |
Find model genes from PCA data |
findMarkers |
Find marker genes for each cluster |
find_neighbors |
K Nearest Neighbour Search |
g2m.phase |
A dataset of G2 and M phase genes |
gate.to.clust |
Assign cluster number to cell ids |
gene.plot |
Make scatter, box and bar plots for genes |
gene.stats |
Make statistical information for each gene across all the cells (SD, mean, expression, etc.) |
gg.cor |
Gene-gene correlation. This function helps to visulaize and calculate gene-gene correlations. |
heatmap.gg.plot |
Create heatmaps for genes in clusters or conditions. |
hto.anno |
Demultiplexing HTOs |
i.score |
Cell cycle phase prediction |
iba |
iCellR Batch Alignment (IBA) |
iclust |
iCellR Clustering |
load.h5 |
Load h5 data as data.frame |
load10x |
Load 10X data as data.frame |
make.bed |
Make BED Files |
make.gene.model |
Make a gene model for clustering |
make.obj |
Create an object of class iCellR. |
myImp |
Impute data |
norm.adt |
Normalize ADT data. This function takes data frame and Normalizes ADT data. |
norm.data |
Normalize data |
opt.pcs.plot |
Find optimal number of PCs for clustering |
prep.vdj |
Prepare VDJ data |
pseudotime |
Pseudotime |
pseudotime.knetl |
iCellR KNN Network |
pseudotime.tree |
Pseudotime Tree |
qc.stats |
Calculate the number of UMIs and genes per cell and percentage of mitochondrial genes per cell and cell cycle genes. |
Rphenograph |
RphenoGraph clustering |
run.anchor |
Run anchor alignment on the main data. |
run.cca |
Run CCA on the main data |
run.clustering |
Clustering the data |
run.diff.exp |
Differential expression (DE) analysis |
run.diffusion.map |
Run diffusion map on PCA data (PHATE - Potential of Heat-Diffusion for Affinity-Based Transition Embedding) |
run.impute |
Impute the main data |
run.knetl |
iCellR KNN Network |
run.mnn |
Run MNN alignment on the main data. |
run.pc.tsne |
Run tSNE on PCA Data. Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding |
run.pca |
Run PCA on the main data |
run.phenograph |
Clustering the data |
run.tsne |
Run tSNE on the Main Data. Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding |
run.umap |
Run UMAP on PCA Data (Computes a manifold approximation and projection) |
s.phase |
A dataset of S phase genes |
spatial.plot |
Plot nGenes, UMIs and perecent mito, genes, clusters and more on spatial image |
stats.plot |
Plot nGenes, UMIs and percent mito |
top.markers |
Choose top marker genes |
vdj.stats |
VDJ stats |
volcano.ma.plot |
Create MA and Volcano plots. |