run.pc.tsne {iCellR} | R Documentation |
Run tSNE on PCA Data. Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding
Description
This function takes an object of class iCellR and runs tSNE on PCA data. Wrapper for the C++ implementation of Barnes-Hut t-Distributed Stochastic Neighbor Embedding. t-SNE is a method for constructing a low dimensional embedding of high-dimensional data, distances or similarities. Exact t-SNE can be computed by setting theta=0.0.
Usage
run.pc.tsne(
x = NULL,
dims = 1:10,
my.seed = 0,
add.3d = TRUE,
initial_dims = 50,
perplexity = 30,
theta = 0.5,
check_duplicates = FALSE,
pca = TRUE,
max_iter = 1000,
verbose = FALSE,
is_distance = FALSE,
Y_init = NULL,
pca_center = TRUE,
pca_scale = FALSE,
stop_lying_iter = ifelse(is.null(Y_init), 250L, 0L),
mom_switch_iter = ifelse(is.null(Y_init), 250L, 0L),
momentum = 0.5,
final_momentum = 0.8,
eta = 200,
exaggeration_factor = 12
)
Arguments
x |
An object of class iCellR. |
dims |
PC dimentions to be used for tSNE analysis. |
my.seed |
seed number, default = 0. |
add.3d |
Add 3D tSNE as well, default = TRUE. |
initial_dims |
integer; the number of dimensions that should be retained in the initial PCA step (default: 50) |
perplexity |
numeric; Perplexity parameter |
theta |
numeric; Speed/accuracy trade-off (increase for less accuracy), set to 0.0 for exact TSNE (default: 0.5) |
check_duplicates |
logical; Checks whether duplicates are present. It is best to make sure there are no duplicates present and set this option to FALSE, especially for large datasets (default: TRUE) |
pca |
logical; Whether an initial PCA step should be performed (default: TRUE) |
max_iter |
integer; Number of iterations (default: 1000) |
verbose |
logical; Whether progress updates should be messageed (default: FALSE) |
is_distance |
logical; Indicate whether X is a distance matrix (experimental, default: FALSE) |
Y_init |
matrix; Initial locations of the objects. If NULL, random initialization will be used (default: NULL). Note that when using this, the initial stage with exaggerated perplexity values and a larger momentum term will be skipped. |
pca_center |
logical; Should data be centered before pca is applied? (default: TRUE) |
pca_scale |
logical; Should data be scaled before pca is applied? (default: FALSE) |
stop_lying_iter |
integer; Iteration after which the perplexities are no longer exaggerated (default: 250, except when Y_init is used, then 0) |
mom_switch_iter |
integer; Iteration after which the final momentum is used (default: 250, except when Y_init is used, then 0) |
momentum |
numeric; Momentum used in the first part of the optimization (default: 0.5) |
final_momentum |
numeric; Momentum used in the final part of the optimization (default: 0.8) |
eta |
numeric; Learning rate (default: 200.0) |
exaggeration_factor |
numeric; Exaggeration factor used to multiply the P matrix in the first part of the optimization (default: 12.0) |
Value
An object of class iCellR.