Metabolomics Data Analysis Toolbox


[Up] [Top]

Documentation for package ‘mt’ version 2.0-1.20

Help Pages

A B C D F G H L M O P S T U V

-- A --

aam.cl Estimate Classification Accuracy By Resampling Method
aam.mcl Estimate Classification Accuracy By Resampling Method
abr1 abr1 Data
accest Estimate Classification Accuracy By Resampling Method
accest.default Estimate Classification Accuracy By Resampling Method
accest.formula Estimate Classification Accuracy By Resampling Method

-- B --

binest Binary Classification
boot.err Calculate .632 and .632+ Bootstrap Error Rate
boxplot.frankvali Boxplot Method for Class 'frankvali'
boxplot.maccest Boxplot Method for Class 'maccest'

-- C --

cl.auc Assess Classification Performances
cl.perf Assess Classification Performances
cl.rate Assess Classification Performances
cl.roc Assess Classification Performances
classifier Wrapper Function for Classifiers
combn.pw Generate Pairwise Data Set
cor.cut Correlation Analysis Utilities
cor.hcl Correlation Analysis Utilities
cor.heat Correlation Analysis Utilities
cor.heat.gram Correlation Analysis Utilities
corrgram.circle Correlation Analysis Utilities
corrgram.ellipse Correlation Analysis Utilities

-- D --

dat.sel Generate Pairwise Data Set
df.summ Summary Utilities

-- F --

feat.agg Rank aggregation by Borda count algorithm
feat.freq Frequency and Stability of Feature Selection
feat.mfs Multiple Feature Selection
feat.mfs.stab Multiple Feature Selection
feat.mfs.stats Multiple Feature Selection
feat.rank.re Feature Ranking with Resampling Method
frank.err Feature Ranking and Validation on Feature Subset
frankvali Estimates Feature Ranking Error Rate with Resampling
frankvali.default Estimates Feature Ranking Error Rate with Resampling
frankvali.formula Estimates Feature Ranking Error Rate with Resampling
fs.anova Feature Selection Using ANOVA
fs.auc Feature Selection Using Area under Receiver Operating Curve (AUC)
fs.bw Feature Selection Using Between-Group to Within-Group (BW) Ratio
fs.cl Estimates Feature Ranking Error Rate with Resampling
fs.cl.1 Estimates Feature Ranking Error Rate with Resampling
fs.kruskal Feature Selection Using Kruskal-Wallis Test
fs.pca Feature Selection by PCA
fs.pls Feature Selection Using PLS
fs.plsvip Feature Selection Using PLS
fs.plsvip.1 Feature Selection Using PLS
fs.plsvip.2 Feature Selection Using PLS
fs.relief Feature Selection Using RELIEF Method
fs.rf Feature Selection Using Random Forests (RF)
fs.rf.1 Feature Selection Using Random Forests (RF)
fs.rfe Feature Selection Using SVM-RFE
fs.snr Feature Selection Using Signal-to-Noise Ratio (SNR)
fs.welch Feature Selection Using Welch Test
fs.wilcox Feature Selection Using Wilcoxon Test

-- G --

get.fs.len Get Length of Feature Subset for Validation
grpplot Plot Matrix-Like Object by Group

-- H --

hm.cols Correlation Analysis Utilities

-- L --

lda_plot_wrap Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA
lda_plot_wrap.1 Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA
list2df List Manipulation Utilities

-- M --

maccest Estimation of Multiple Classification Accuracy
maccest.default Estimation of Multiple Classification Accuracy
maccest.formula Estimation of Multiple Classification Accuracy
mbinest Binary Classification by Multiple Classifier
mc.anova Multiple Comparison by 'ANOVA' and Pairwise Comparison by 'HSDTukey Test'
mc.fried Multiple Comparison by 'Friedman Test' and Pairwise Comparison by 'Wilcoxon Test'
mc.norm Normality Test by Shapiro-Wilk Test
mdsplot Plot Classical Multidimensional Scaling
mds_plot_wrap Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA
mv.fill Missing Value Utilities
mv.stats Missing Value Utilities
mv.zene Missing Value Utilities

-- O --

osc Orthogonal Signal Correction (OSC)
osc.default Orthogonal Signal Correction (OSC)
osc.formula Orthogonal Signal Correction (OSC)
osc_sjoblom Orthogonal Signal Correction (OSC) Approach by Sjoblom et al.
osc_wise Orthogonal Signal Correction (OSC) Approach by Wise and Gallagher.
osc_wold Orthogonal Signal Correction (OSC) Approach by Wold et al.

-- P --

panel.elli Panel Function for Plotting Ellipse and outlier
panel.elli.1 Panel Function for Plotting Ellipse and outlier
panel.outl Panel Function for Plotting Ellipse and outlier
panel.smooth.line Panel Function for Plotting Regression Line
pca.comp Plot Function for PCA with Grouped Values
pca.outlier Outlier detection by PCA
pca.outlier.1 Outlier detection by PCA
pca.plot Plot Function for PCA with Grouped Values
pcalda Classification with PCADA
pcalda.default Classification with PCADA
pcalda.formula Classification with PCADA
pcaplot Plot Function for PCA with Grouped Values
pca_plot_wrap Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA
plot.accest Plot Method for Class 'accest'
plot.maccest Plot Method for Class 'maccest'
plot.pcalda Plot Method for Class 'pcalda'
plot.plsc Plot Method for Class 'plsc' or 'plslda'
plot.plslda Plot Method for Class 'plsc' or 'plslda'
plsc Classification with PLSDA
plsc.default Classification with PLSDA
plsc.formula Classification with PLSDA
plslda Classification with PLSDA
plslda.default Classification with PLSDA
plslda.formula Classification with PLSDA
pls_plot_wrap Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA
predict.osc Predict Method for Class 'osc'
predict.pcalda Predict Method for Class 'pcalda'
predict.plsc Predict Method for Class 'plsc' or 'plslda'
predict.plslda Predict Method for Class 'plsc' or 'plslda'
preproc Pre-process Data Set
preproc.const Pre-process Data Set
preproc.sd Pre-process Data Set
print.accest Estimate Classification Accuracy By Resampling Method
print.frankvali Estimates Feature Ranking Error Rate with Resampling
print.maccest Estimation of Multiple Classification Accuracy
print.osc Orthogonal Signal Correction (OSC)
print.pcalda Classification with PCADA
print.plsc Classification with PLSDA
print.plslda Classification with PLSDA
print.summary.accest Estimate Classification Accuracy By Resampling Method
print.summary.frankvali Estimates Feature Ranking Error Rate with Resampling
print.summary.maccest Estimation of Multiple Classification Accuracy
print.summary.osc Orthogonal Signal Correction (OSC)
print.summary.pcalda Classification with PCADA
print.summary.plsc Classification with PLSDA
print.summary.plslda Classification with PLSDA
pval.reject P-values Utilities
pval.test P-values Utilities

-- S --

save.tab Save List of Data Frame or Matrix into CSV File
shrink.list List Manipulation Utilities
stats.mat Statistical Summary Utilities for Two-Classes Data
stats.vec Statistical Summary Utilities for Two-Classes Data
summary.accest Estimate Classification Accuracy By Resampling Method
summary.frankvali Estimates Feature Ranking Error Rate with Resampling
summary.maccest Estimation of Multiple Classification Accuracy
summary.osc Orthogonal Signal Correction (OSC)
summary.pcalda Classification with PCADA
summary.plsc Classification with PLSDA
summary.plslda Classification with PLSDA

-- T --

trainind Generate Index of Training Samples
tune.func Functions for Tuning Appropriate Number of Components
tune.pcalda Functions for Tuning Appropriate Number of Components
tune.plsc Functions for Tuning Appropriate Number of Components
tune.plslda Functions for Tuning Appropriate Number of Components

-- U --

un.list List Manipulation Utilities

-- V --

valipars Generate Control Parameters for Resampling
vec.summ Summary Utilities
vec.summ.1 Summary Utilities