aam.cl | Estimate Classification Accuracy By Resampling Method |
aam.mcl | Estimate Classification Accuracy By Resampling Method |
abr1 | abr1 Data |
accest | Estimate Classification Accuracy By Resampling Method |
accest.default | Estimate Classification Accuracy By Resampling Method |
accest.formula | Estimate Classification Accuracy By Resampling Method |
binest | Binary Classification |
boot.err | Calculate .632 and .632+ Bootstrap Error Rate |
boxplot.frankvali | Boxplot Method for Class 'frankvali' |
boxplot.maccest | Boxplot Method for Class 'maccest' |
cl.auc | Assess Classification Performances |
cl.perf | Assess Classification Performances |
cl.rate | Assess Classification Performances |
cl.roc | Assess Classification Performances |
classifier | Wrapper Function for Classifiers |
combn.pw | Generate Pairwise Data Set |
cor.cut | Correlation Analysis Utilities |
cor.hcl | Correlation Analysis Utilities |
cor.heat | Correlation Analysis Utilities |
cor.heat.gram | Correlation Analysis Utilities |
corrgram.circle | Correlation Analysis Utilities |
corrgram.ellipse | Correlation Analysis Utilities |
dat.sel | Generate Pairwise Data Set |
df.summ | Summary Utilities |
feat.agg | Rank aggregation by Borda count algorithm |
feat.freq | Frequency and Stability of Feature Selection |
feat.mfs | Multiple Feature Selection |
feat.mfs.stab | Multiple Feature Selection |
feat.mfs.stats | Multiple Feature Selection |
feat.rank.re | Feature Ranking with Resampling Method |
frank.err | Feature Ranking and Validation on Feature Subset |
frankvali | Estimates Feature Ranking Error Rate with Resampling |
frankvali.default | Estimates Feature Ranking Error Rate with Resampling |
frankvali.formula | Estimates Feature Ranking Error Rate with Resampling |
fs.anova | Feature Selection Using ANOVA |
fs.auc | Feature Selection Using Area under Receiver Operating Curve (AUC) |
fs.bw | Feature Selection Using Between-Group to Within-Group (BW) Ratio |
fs.cl | Estimates Feature Ranking Error Rate with Resampling |
fs.cl.1 | Estimates Feature Ranking Error Rate with Resampling |
fs.kruskal | Feature Selection Using Kruskal-Wallis Test |
fs.pca | Feature Selection by PCA |
fs.pls | Feature Selection Using PLS |
fs.plsvip | Feature Selection Using PLS |
fs.plsvip.1 | Feature Selection Using PLS |
fs.plsvip.2 | Feature Selection Using PLS |
fs.relief | Feature Selection Using RELIEF Method |
fs.rf | Feature Selection Using Random Forests (RF) |
fs.rf.1 | Feature Selection Using Random Forests (RF) |
fs.rfe | Feature Selection Using SVM-RFE |
fs.snr | Feature Selection Using Signal-to-Noise Ratio (SNR) |
fs.welch | Feature Selection Using Welch Test |
fs.wilcox | Feature Selection Using Wilcoxon Test |
get.fs.len | Get Length of Feature Subset for Validation |
grpplot | Plot Matrix-Like Object by Group |
hm.cols | Correlation Analysis Utilities |
lda_plot_wrap | Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA |
lda_plot_wrap.1 | Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA |
list2df | List Manipulation Utilities |
maccest | Estimation of Multiple Classification Accuracy |
maccest.default | Estimation of Multiple Classification Accuracy |
maccest.formula | Estimation of Multiple Classification Accuracy |
mbinest | Binary Classification by Multiple Classifier |
mc.anova | Multiple Comparison by 'ANOVA' and Pairwise Comparison by 'HSDTukey Test' |
mc.fried | Multiple Comparison by 'Friedman Test' and Pairwise Comparison by 'Wilcoxon Test' |
mc.norm | Normality Test by Shapiro-Wilk Test |
mdsplot | Plot Classical Multidimensional Scaling |
mds_plot_wrap | Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA |
mv.fill | Missing Value Utilities |
mv.stats | Missing Value Utilities |
mv.zene | Missing Value Utilities |
osc | Orthogonal Signal Correction (OSC) |
osc.default | Orthogonal Signal Correction (OSC) |
osc.formula | Orthogonal Signal Correction (OSC) |
osc_sjoblom | Orthogonal Signal Correction (OSC) Approach by Sjoblom et al. |
osc_wise | Orthogonal Signal Correction (OSC) Approach by Wise and Gallagher. |
osc_wold | Orthogonal Signal Correction (OSC) Approach by Wold et al. |
panel.elli | Panel Function for Plotting Ellipse and outlier |
panel.elli.1 | Panel Function for Plotting Ellipse and outlier |
panel.outl | Panel Function for Plotting Ellipse and outlier |
panel.smooth.line | Panel Function for Plotting Regression Line |
pca.comp | Plot Function for PCA with Grouped Values |
pca.outlier | Outlier detection by PCA |
pca.outlier.1 | Outlier detection by PCA |
pca.plot | Plot Function for PCA with Grouped Values |
pcalda | Classification with PCADA |
pcalda.default | Classification with PCADA |
pcalda.formula | Classification with PCADA |
pcaplot | Plot Function for PCA with Grouped Values |
pca_plot_wrap | Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA |
plot.accest | Plot Method for Class 'accest' |
plot.maccest | Plot Method for Class 'maccest' |
plot.pcalda | Plot Method for Class 'pcalda' |
plot.plsc | Plot Method for Class 'plsc' or 'plslda' |
plot.plslda | Plot Method for Class 'plsc' or 'plslda' |
plsc | Classification with PLSDA |
plsc.default | Classification with PLSDA |
plsc.formula | Classification with PLSDA |
plslda | Classification with PLSDA |
plslda.default | Classification with PLSDA |
plslda.formula | Classification with PLSDA |
pls_plot_wrap | Grouped Data Visualisation by PCA, MDS, PCADA and PLSDA |
predict.osc | Predict Method for Class 'osc' |
predict.pcalda | Predict Method for Class 'pcalda' |
predict.plsc | Predict Method for Class 'plsc' or 'plslda' |
predict.plslda | Predict Method for Class 'plsc' or 'plslda' |
preproc | Pre-process Data Set |
preproc.const | Pre-process Data Set |
preproc.sd | Pre-process Data Set |
print.accest | Estimate Classification Accuracy By Resampling Method |
print.frankvali | Estimates Feature Ranking Error Rate with Resampling |
print.maccest | Estimation of Multiple Classification Accuracy |
print.osc | Orthogonal Signal Correction (OSC) |
print.pcalda | Classification with PCADA |
print.plsc | Classification with PLSDA |
print.plslda | Classification with PLSDA |
print.summary.accest | Estimate Classification Accuracy By Resampling Method |
print.summary.frankvali | Estimates Feature Ranking Error Rate with Resampling |
print.summary.maccest | Estimation of Multiple Classification Accuracy |
print.summary.osc | Orthogonal Signal Correction (OSC) |
print.summary.pcalda | Classification with PCADA |
print.summary.plsc | Classification with PLSDA |
print.summary.plslda | Classification with PLSDA |
pval.reject | P-values Utilities |
pval.test | P-values Utilities |
save.tab | Save List of Data Frame or Matrix into CSV File |
shrink.list | List Manipulation Utilities |
stats.mat | Statistical Summary Utilities for Two-Classes Data |
stats.vec | Statistical Summary Utilities for Two-Classes Data |
summary.accest | Estimate Classification Accuracy By Resampling Method |
summary.frankvali | Estimates Feature Ranking Error Rate with Resampling |
summary.maccest | Estimation of Multiple Classification Accuracy |
summary.osc | Orthogonal Signal Correction (OSC) |
summary.pcalda | Classification with PCADA |
summary.plsc | Classification with PLSDA |
summary.plslda | Classification with PLSDA |
trainind | Generate Index of Training Samples |
tune.func | Functions for Tuning Appropriate Number of Components |
tune.pcalda | Functions for Tuning Appropriate Number of Components |
tune.plsc | Functions for Tuning Appropriate Number of Components |
tune.plslda | Functions for Tuning Appropriate Number of Components |
un.list | List Manipulation Utilities |
valipars | Generate Control Parameters for Resampling |
vec.summ | Summary Utilities |
vec.summ.1 | Summary Utilities |