| pca.outlier {mt} | R Documentation |
Outlier detection by PCA
Description
Outlier detection by the Mahalanobis distances of PC1 and PC2. Also plot PC1 and PC2 with its confidence ellipse.
Usage
pca.outlier(x, center = TRUE, scale=TRUE,conf.level = 0.975,...)
pca.outlier.1(x, center = TRUE, scale=TRUE, conf.level = 0.975,
group=NULL, main = "PCA", cex=0.7,...)
Arguments
x |
A data frame or matrix. |
center |
A logical value indicating whether the variables should be shifted to be zero centred before PCA analysis takes place. |
scale |
A logical value indicating whether the variables should be scaled to have unit variance before PCA analysis takes place. |
conf.level |
The confidence level for controlling the cutoff of the Mahalanobis distances. |
group |
A string character or factor indicating group
information of row of |
main |
An overall title for PCA plot. |
cex |
A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default. |
... |
Further arguments for plotting |
Value
A list with components:
plot |
plot object of class |
outlier |
Outliers detected. |
conf.level |
Confidence level used. |
mah.dist |
Mahalanobis distances of each data sample. |
cutoff |
Cutoff of Mahalanobis distances used for outlier detection. |
Note
Examples of panel.elli and panel.outl
give more general information about ellipses and outliers. If you
ONLY want to plot outliers based on PCA in a general way, for
example, outliers in different groups or in conditional panel, you can
write an wrapper function combining with pca.comp,
panel.elli and panel.outl. It is quite
similiar to the implementation of pca_plot_wrap.
Author(s)
Wanchang Lin
See Also
pcaplot, grpplot,
panel.outl,panel.elli,
pca_plot_wrap
Examples
data(iris)
## call lattice version
pca.outlier(iris[,1:4], adj=-0.5)
## plot group
pca.outlier(iris[,1:4], adj=-0.5,groups=iris[,5])
## more information about groups
pca.outlier(iris[,1:4],groups=iris[,5],adj = -0.5, xlim=c(-5, 5),
auto.key = list(x = .05, y = .9, corner = c(0, 0)),
par.settings = list(superpose.symbol=list(pch=rep(1:25))))
## call basic graphic version
pca.outlier.1(iris[,1:4])
## plot group
pca.outlier.1(iris[,1:4], group=iris[,5])