trainind {mt} | R Documentation |
Generate Index of Training Samples
Description
Generate index of training samples. The sampling scheme includes leave-one-out
cross-validation (loocv
), cross-validation (cv
), randomised
validation (random
) and bootstrap (boot
).
Usage
trainind(cl, pars = valipars())
Arguments
cl |
A factor or vector of class. |
pars |
A list of sampling parameters for generating training index. It has
the same structure as the output of |
Value
Returns a list of training index.
Author(s)
Wanchang Lin
See Also
Examples
## A trivia example
x <- as.factor(sample(c("a","b"), 20, replace=TRUE))
table(x)
pars <- valipars(sampling="rand", niter=2, nreps=4, strat=TRUE,div=2/3)
(temp <- trainind(x,pars=pars))
(tmp <- temp[[1]])
x[tmp[[1]]];table(x[tmp[[1]]]) ## train idx
x[tmp[[2]]];table(x[tmp[[2]]])
x[tmp[[3]]];table(x[tmp[[3]]])
x[tmp[[4]]];table(x[tmp[[4]]])
x[-tmp[[1]]];table(x[-tmp[[1]]]) ## test idx
x[-tmp[[2]]];table(x[-tmp[[2]]])
x[-tmp[[3]]];table(x[-tmp[[3]]])
x[-tmp[[4]]];table(x[-tmp[[4]]])
# iris data set
data(iris)
dat <- subset(iris, select = -Species)
cl <- iris$Species
## generate 5-fold cross-validation samples
cv.idx <- trainind(cl, pars = valipars(sampling="cv", niter=2, nreps=5))
## generate leave-one-out cross-validation samples
loocv.idx <- trainind(cl, pars = valipars(sampling = "loocv"))
## generate bootstrap samples with 25 replications
boot.idx <- trainind(cl, pars = valipars(sampling = "boot", niter=2,
nreps=25))
## generate randomised samples with 1/4 division and 10 replications.
rand.idx <- trainind(cl, pars = valipars(sampling = "rand", niter=2,
nreps=10, div = 1/4))
[Package mt version 2.0-1.20 Index]