fs.rfe {mt} | R Documentation |
Feature Selection Using SVM-RFE
Description
Feature selection using Support Vector Machine based on Recursive Feature Elimination (SVM-RFE)
Usage
fs.rfe(x,y,fs.len="power2",...)
Arguments
x |
A data frame or matrix of data set. |
y |
A factor or vector of class. |
fs.len |
Method for feature lengths used in SVM-RFE computation.
For details, see |
... |
Arguments to pass to |
Value
A list with components:
fs.rank |
A vector of feature ranking scroes. |
fs.order |
A vector of feature order from best to worst. |
Author(s)
Wanchang Lin
See Also
Examples
## prepare data set
data(abr1)
cls <- factor(abr1$fact$class)
dat <- abr1$pos
## dat <- abr1$pos[,110:1930]
## fill zeros with NAs
dat <- mv.zene(dat)
## missing values summary
mv <- mv.stats(dat, grp=cls)
mv ## View the missing value pattern
## filter missing value variables
## dim(dat)
dat <- dat[,mv$mv.var < 0.15]
## dim(dat)
## fill NAs with mean
dat <- mv.fill(dat,method="mean")
## log transformation
dat <- preproc(dat, method="log10")
## select class "1" and "2" for feature ranking
ind <- grepl("1|2", cls)
mat <- dat[ind,,drop=FALSE]
mat <- as.matrix(mat)
grp <- cls[ind, drop=TRUE]
## apply RFE method for feature selection/ranking
res <- fs.rfe(mat,grp)
names(res)
[Package mt version 2.0-1.20 Index]