mbinest {mt} | R Documentation |
Binary Classification by Multiple Classifier
Description
Binary classification by multiple classifier.
Usage
mbinest(dat, cl, choices = NULL, method, pars=valipars(),...)
Arguments
dat |
A matrix or data frame containing the explanatory variables. |
cl |
A factor specifying the class for each observation. |
choices |
The vector or list of class labels to be chosen for binary classification.
For details, see |
method |
Multiple classification methods to be used. For details, see |
pars |
A list of parameters of the resampling method. See |
... |
Additional parameters to |
Value
A list with components:
all |
All results of classification. |
com |
A matrix of the combinations of the binary class labels. |
acc |
A table of classification accuracy for the binary combination. |
mar |
Prediction margin. |
auc |
The area under receiver operating curve (AUC). |
method |
Classification methods used. |
niter |
Number of iterations. |
sampling |
Sampling scheme used. |
nreps |
Number of replications in each iteration if sampling is not |
Author(s)
Wanchang Lin
See Also
maccest
, maccest
,valipars
, dat.sel
Examples
## iris data set
data(iris)
dat <- subset(iris, select = -Species)
cl <- iris$Species
method <- c("svm","pcalda")
pars <- valipars(sampling="cv",niter = 10, nreps = 5)
res <- mbinest(dat,cl,choices=c("setosa"), method=method,
pars = pars, kernel="linear")
## combine prediction accuracy, AUC and margin
z <- round(cbind(res$acc,res$auc,res$mar),digits=3)
colnames(z) <- c(paste(method,".acc", sep=""),paste(method,".auc", sep=""),
paste(method,".mar", sep=""))