preproc {mt} | R Documentation |
Pre-process Data Set
Description
Pre-process a data frame or matrix by different methods.
Usage
preproc (x, y=NULL,method="log",add=1)
preproc.sd(x, y=NULL, na.rm = FALSE)
preproc.const(x, y, tol = 1.0e-4)
Arguments
x |
A numeric data frame or matrix to be pre-processed. |
y |
A factor specifying the group. It is only used by the
method |
method |
A method used to pre-process the data set. The following methods are supported:
|
na.rm |
A logical value indicating whether NA values should be stripped before the computation proceeds. |
add |
A numeric value for addition used in the logarmath transformation |
tol |
A tolerance to decide if a matrix is singular; it will reject variables and linear combinations of unit-variance variables whose variance is less than tol^2. |
Details
preproc
transforms data set by provided method
.
preproc.sd
removes variables which have (near) zero S.D with or without
respect to class/grouped information.
preproc.const
removes variables appears to be constant within groups / classes.
Value
A pre-processed data set.
Author(s)
Wanchang Lin
References
Berg, R., Hoefsloot, H., Westerhuis, J., Smilde, A. and Werf, M. (2006), Centering, scaling, and transformations: improving the biological information content of metabolomics data, BMC Genomics, 7:142
Examples
data(abr1)
cl <- factor(abr1$fact$class)
dat <- abr1$pos
## normalise data set using "TICnorm"
z.1 <- preproc(dat, y=cl, method="TICnorm")
## scale data set using "log10"
z.2 <- preproc(dat,method="log10", add=1)
## or scale data set using "log" and "TICnorm" sequentially
z.3 <- preproc(dat,method=c("log","TICnorm"), add=0.1)