pcaplot {mt} | R Documentation |
Plot Function for PCA with Grouped Values
Description
Plot function for PCA with grouped values.
Usage
pcaplot(x, y, scale = TRUE, pcs = 1:2, ...)
pca.plot(x, y, scale=TRUE, abbrev = FALSE, ep.plot=FALSE,...)
pca.comp(x, scale=FALSE, pcs=1:2,...)
Arguments
x |
A matrix or data frame to be plotted. |
y |
A factor or vector giving group information of columns of
|
scale |
A logical value indicating whether the data set |
pcs |
A vector of index of PCs to be plotted. |
ep.plot |
A logical value indicating whether the ellipse should be plotted. |
abbrev |
Whether the group labels are abbreviated on the plots.
If |
... |
Further arguments to |
Value
pcaplot
returns an object of class "trellis"
.
pca.comp
returns a list with components:
scores |
PCA scores |
vars |
Proportion of variance |
varsn |
A vector of string indicating the percentage of variance. |
Note
Number of columns of x
must be larger than 1. pcaplot
uses
lattice
to plot PCA while pca.plot
uses the basic graphics
to do so. pca.plot
plots PC1 and PC2 only.
Author(s)
Wanchang Lin
See Also
grpplot
, panel.elli.1
,
pca_plot_wrap
Examples
## examples of 'pcaplot'
data(iris)
pcaplot(iris[,1:4], iris[,5],pcs=c(2,1),ep=2)
## change confidence interval (see 'panel.elli.1')
pcaplot(iris[,1:4], iris[,5],pcs=c(1,2),ep=2, conf.level = 0.9)
pcaplot(iris[,1:4], iris[,5],pcs=c(2,1),ep=1,
auto.key=list(space="top", columns=3))
pcaplot(iris[,1:4], iris[,5],pcs=c(1,3,4))
tmp <- pcaplot(iris[,1:4], iris[,5],pcs=1:3,ep=2)
tmp
## change symbol's color, type and size
pcaplot(iris[,1:4], iris[,5],pcs=c(2,1),main="IRIS DATA", cex=1.2,
auto.key=list(space="right", col=c("black","blue","red"), cex=1.2),
par.settings = list(superpose.symbol = list(col=c("black","blue","red"),
pch=c(1:3))))
## compare pcaplot and pca.plot.
pcaplot(iris[,1:4], iris[,5],pcs=c(1,2),ep=2)
pca.plot(iris[,1:4], iris[,5], ep.plot = TRUE)
## an example of 'pca.comp'
pca.comp(iris[,1:4], scale = TRUE, pcs=1:3)