boot.err {mt} | R Documentation |
Calculate .632 and .632+ Bootstrap Error Rate
Description
Calculate .632 bootstrap and .632 plus bootstrap error rate.
Usage
boot.err(err, resub)
Arguments
err |
Average error rate of bootstrap samples. |
resub |
A list including apparent error rate, class label and
the predicted class label of the original training data (not resampled
training data). Can be generated by |
Value
A list with the following components:
ae |
Apparent error rate. |
boot |
Average error rate of bootstrap samples(Same as |
b632 |
.632 bootstrap error rate. |
b632p |
.632 plus bootstrap error rate. |
Author(s)
Wanchang Lin
References
Witten, I. H. and Frank, E. (2005) Data Mining - Practical Machine Learning and Techniques. Elsevier.
Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. Chapman & Hall.
Efron, B. and Tibshirani, R. (1997) Improvements on cross-validation: the .632+ bootstrap method. Journal of the American Statistical Association, 92, 548-560.
See Also
Examples
## iris data set
data(iris)
x <- subset(iris, select = -Species)
y <- iris$Species
## 10 bootstrap training samples
pars <- valipars(sampling = "boot", niter = 1, nreps = 10)
tr.idx <- trainind(y, pars=pars)[[1]]
## bootstrap error rate
err <- sapply(tr.idx, function(i){
pred <- classifier(x[i,,drop = FALSE],y[i],x[-i,,drop = FALSE],y[-i],
method = "knn")$err
})
## average bootstrap error rate
err <- mean(err)
## apparent error rate
resub <- classifier(x,y,method = "knn")
##
err.boot <- boot.err(err, resub)