fs.rf {mt} | R Documentation |
Feature Selection Using Random Forests (RF)
Description
Feature selection using Random Forests (RF).
Usage
fs.rf(x,y,...)
fs.rf.1(x,y,fs.len="power2",...)
Arguments
x |
A data frame or matrix of data set. |
y |
A factor or vector of class. |
fs.len |
Method or numeric sequence for feature lengths. For
details, see |
... |
Arguments to pass to |
Details
fs.rf.1
select features based on successively eliminating the least
important variables.
Value
A list with components:
fs.rank |
A vector of feature ranking scores. |
fs.order |
A vector of feature order from best to worst. |
stats |
A vector of measurements. For |
Author(s)
Wanchang Lin
Examples
data(abr1)
cls <- factor(abr1$fact$class)
dat <- abr1$pos
## fill zeros with NAs
dat <- mv.zene(dat)
## missing values summary
mv <- mv.stats(dat, grp=cls)
mv ## View the missing value pattern
## filter missing value variables
dat <- dat[,mv$mv.var < 0.15]
## fill NAs with mean
dat <- mv.fill(dat,method="mean")
## log transformation
dat <- preproc(dat, method="log10")
## select class "1" and "2" for feature ranking
ind <- grepl("1|2", cls)
mat <- dat[ind,,drop=FALSE]
mat <- as.matrix(mat)
grp <- cls[ind, drop=TRUE]
## apply random forests for feature selection/ranking
res <- fs.rf(mat,grp)
res.1 <- fs.rf.1(mat,grp)
## compare the results
fs <- cbind(fs.rf=res$fs.order, fs.rf.1=res.1$fs.order)
## plot the important score of 'fs.rf' (not 'fs.rf.1')
score <- res$stats
score <- sort(score, decreasing = TRUE)
plot(score)
[Package mt version 2.0-1.20 Index]