osc_wise {mt} | R Documentation |
Orthogonal Signal Correction (OSC) Approach by Wise and Gallagher.
Description
Orthogonal signal correction (OSC) approach by Wise and Gallagher.
Usage
osc_wise(x, y, center=TRUE,osc.ncomp=4,pls.ncomp=10,
tol=1e-3,iter=20,...)
Arguments
x |
A numeric data frame or matrix to be pre-processed. |
y |
A vector or factor specifying the class for each observation. |
center |
A logical value indicating whether the data set should be centred by column-wise. |
osc.ncomp |
The number of components to be used in the OSC calculation. |
pls.ncomp |
The number of components to be used in the PLS calculation. |
tol |
A scalar value of tolerance for OSC computation. |
iter |
The number of iteration used in OSC calculation. |
... |
Arguments passed to or from other methods. |
Value
A list containing the following components:
x |
A matrix of OSC corrected data set. |
R2 |
R2 statistics. It is calculated as the fraction of variation in X after OSC correction. |
angle |
An angle used for checking if scores |
w |
A matrix of OSC weights. |
p |
A matrix of OSC loadings. |
t |
A matrix of OSC scores. |
center |
A logical value indicating whether the data set has been centred by column-wise. |
Author(s)
Wanchang Lin
References
Westerhuis, J. A., de Jong, S., Smilde, A, K. (2001). Direct orthogonal signal correction. Chemometrics Intell. Lab. Syst., 56: 13-25.
Wise, B. M. and Gallagher, N.B. http://www.eigenvector.com/MATLAB/OSC.html.
See Also
osc
, predict.osc
, osc_sjoblom
,
osc_wold
Examples
data(abr1)
cl <- factor(abr1$fact$class)
dat <- abr1$pos
## divide data as training and test data
idx <- sample(1:nrow(dat), round((2/3)*nrow(dat)), replace=FALSE)
## construct train and test data
train.dat <- dat[idx,]
train.t <- cl[idx]
test.dat <- dat[-idx,]
test.t <- cl[-idx]
## build OSC model based on the training data
res <- osc_wise(train.dat, train.t)
names(res)
## pre-process test data by OSC
test.dat.1 <- predict.osc(res,test.dat)$x