A Tool Kit for Working with Time Series


[Up] [Top]

Documentation for package ‘timetk’ version 2.9.0

Help Pages

A B C D F G H I L M N P S T W misc

timetk-package timetk: Time Series Analysis in the Tidyverse

-- A --

add_time Add / Subtract (For Time Series)
anomalize Automatic group-wise Anomaly Detection
auto_lambda Box Cox Transformation

-- B --

between_time Between (For Time Series): Range detection for date or date-time sequences
bike_sharing_daily Daily Bike Sharing Data
box_cox_inv_vec Box Cox Transformation
box_cox_vec Box Cox Transformation

-- C --

condense_period Convert the Period to a Lower Periodicity (e.g. Go from Daily to Monthly)

-- D --

diff_inv_vec Differencing Transformation
diff_vec Differencing Transformation

-- F --

FANG Stock prices for the "FANG" stocks.
filter_by_time Filter (for Time-Series Data)
filter_period Apply filtering expressions inside periods (windows)
fourier_vec Fourier Series
future_frame Make future time series from existing

-- G --

get_tk_time_scale_template Get and modify the Time Scale Template

-- H --

has_timetk_idx Extract an index of date or datetime from time series objects, models, forecasts

-- I --

is_date_class Check if an object is a date class

-- L --

lag_vec Lag Transformation
lead_vec Lag Transformation
log_interval_inv_vec Log-Interval Transformation for Constrained Interval Forecasting
log_interval_vec Log-Interval Transformation for Constrained Interval Forecasting

-- M --

m4_daily Sample of 4 Daily Time Series Datasets from the M4 Competition
m4_hourly Sample of 4 Hourly Time Series Datasets from the M4 Competition
m4_monthly Sample of 4 Monthly Time Series Datasets from the M4 Competition
m4_quarterly Sample of 4 Quarterly Time Series Datasets from the M4 Competition
m4_weekly Sample of 4 Weekly Time Series Datasets from the M4 Competition
m4_yearly Sample of 4 Yearly Time Series Datasets from the M4 Competition
mutate_by_time Mutate (for Time Series Data)

-- N --

normalize_inv_vec Normalize to Range (0, 1)
normalize_vec Normalize to Range (0, 1)

-- P --

pad_by_time Insert time series rows with regularly spaced timestamps
parse_date2 Fast, flexible date and datetime parsing
parse_datetime2 Fast, flexible date and datetime parsing
plot_acf_diagnostics Visualize the ACF, PACF, and CCFs for One or More Time Series
plot_anomalies Visualize Anomalies for One or More Time Series
plot_anomalies_cleaned Visualize Anomalies for One or More Time Series
plot_anomalies_decomp Visualize Anomalies for One or More Time Series
plot_anomaly_diagnostics Visualize Anomalies for One or More Time Series
plot_seasonal_diagnostics Visualize Multiple Seasonality Features for One or More Time Series
plot_stl_diagnostics Visualize STL Decomposition Features for One or More Time Series
plot_time_series Interactive Plotting for One or More Time Series
plot_time_series_boxplot Interactive Time Series Box Plots
plot_time_series_cv_plan Visualize a Time Series Resample Plan
plot_time_series_regression Visualize a Time Series Linear Regression Formula

-- S --

set_tk_time_scale_template Get and modify the Time Scale Template
slice_period Apply slice inside periods (windows)
slidify Create a rolling (sliding) version of any function
slidify_vec Rolling Window Transformation
smooth_vec Smoothing Transformation using Loess
standardize_inv_vec Standardize to Mean 0, Standard Deviation 1 (Center & Scale)
standardize_vec Standardize to Mean 0, Standard Deviation 1 (Center & Scale)
step_box_cox Box-Cox Transformation using Forecast Methods
step_diff Create a differenced predictor
step_fourier Fourier Features for Modeling Seasonality
step_holiday_signature Holiday Feature (Signature) Generator
step_log_interval Log Interval Transformation for Constrained Interval Forecasting
step_slidify Slidify Rolling Window Transformation
step_slidify_augment Slidify Rolling Window Transformation (Augmented Version)
step_smooth Smoothing Transformation using Loess
step_timeseries_signature Time Series Feature (Signature) Generator
step_ts_clean Clean Outliers and Missing Data for Time Series
step_ts_impute Missing Data Imputation for Time Series
step_ts_pad Pad: Add rows to fill gaps and go from low to high frequency
subtract_time Add / Subtract (For Time Series)
summarise_by_time Summarise (for Time Series Data)
summarize_by_time Summarise (for Time Series Data)

-- T --

taylor_30_min Half-hourly electricity demand
tidy.step_box_cox Box-Cox Transformation using Forecast Methods
tidy.step_diff Create a differenced predictor
tidy.step_fourier Fourier Features for Modeling Seasonality
tidy.step_holiday_signature Holiday Feature (Signature) Generator
tidy.step_log_interval Log Interval Transformation for Constrained Interval Forecasting
tidy.step_slidify Slidify Rolling Window Transformation
tidy.step_slidify_augment Slidify Rolling Window Transformation (Augmented Version)
tidy.step_smooth Smoothing Transformation using Loess
tidy.step_timeseries_signature Time Series Feature (Signature) Generator
tidy.step_ts_clean Clean Outliers and Missing Data for Time Series
tidy.step_ts_impute Missing Data Imputation for Time Series
tidy.step_ts_pad Pad: Add rows to fill gaps and go from low to high frequency
timetk timetk: Time Series Analysis in the Tidyverse
time_arithmetic Add / Subtract (For Time Series)
time_series_cv Time Series Cross Validation
time_series_split Simple Training/Test Set Splitting for Time Series
tk_acf_diagnostics Group-wise ACF, PACF, and CCF Data Preparation
tk_anomaly_diagnostics Automatic group-wise Anomaly Detection by STL Decomposition
tk_augment_differences Add many differenced columns to the data
tk_augment_fourier Add many fourier series to the data
tk_augment_holiday Add many holiday features to the data
tk_augment_holiday_signature Add many holiday features to the data
tk_augment_lags Add many lags to the data
tk_augment_leads Add many lags to the data
tk_augment_slidify Add many rolling window calculations to the data
tk_augment_timeseries Add many time series features to the data
tk_augment_timeseries_signature Add many time series features to the data
tk_get_frequency Automatic frequency and trend calculation from a time series index
tk_get_holiday Get holiday features from a time-series index
tk_get_holidays_by_year Get holiday features from a time-series index
tk_get_holiday_signature Get holiday features from a time-series index
tk_get_timeseries Get date features from a time-series index
tk_get_timeseries_signature Get date features from a time-series index
tk_get_timeseries_summary Get date features from a time-series index
tk_get_timeseries_unit_frequency Get the timeseries unit frequency for the primary time scales
tk_get_timeseries_variables Get date or datetime variables (column names)
tk_get_trend Automatic frequency and trend calculation from a time series index
tk_index Extract an index of date or datetime from time series objects, models, forecasts
tk_make_future_timeseries Make future time series from existing
tk_make_holiday_sequence Make daily Holiday and Weekend date sequences
tk_make_timeseries Intelligent date and date-time sequence creation
tk_make_weekday_sequence Make daily Holiday and Weekend date sequences
tk_make_weekend_sequence Make daily Holiday and Weekend date sequences
tk_seasonal_diagnostics Group-wise Seasonality Data Preparation
tk_stl_diagnostics Group-wise STL Decomposition (Season, Trend, Remainder)
tk_summary_diagnostics Group-wise Time Series Summary
tk_tbl Coerce time-series objects to tibble.
tk_time_scale_template Get and modify the Time Scale Template
tk_time_series_cv_plan Time Series Resample Plan Data Preparation
tk_ts Coerce time series objects and tibbles with date/date-time columns to ts.
tk_tsfeatures Time series feature matrix (Tidy)
tk_ts_ Coerce time series objects and tibbles with date/date-time columns to ts.
tk_xts Coerce time series objects and tibbles with date/date-time columns to xts.
tk_xts_ Coerce time series objects and tibbles with date/date-time columns to xts.
tk_zoo Coerce time series objects and tibbles with date/date-time columns to xts.
tk_zooreg Coerce time series objects and tibbles with date/date-time columns to ts.
tk_zooreg_ Coerce time series objects and tibbles with date/date-time columns to ts.
tk_zoo_ Coerce time series objects and tibbles with date/date-time columns to xts.
ts_clean_vec Replace Outliers & Missing Values in a Time Series
ts_impute_vec Missing Value Imputation for Time Series

-- W --

walmart_sales_weekly Sample Time Series Retail Data from the Walmart Recruiting Store Sales Forecasting Competition
wikipedia_traffic_daily Sample Daily Time Series Data from the Web Traffic Forecasting (Wikipedia) Competition

-- misc --

%+time% Add / Subtract (For Time Series)
%-time% Add / Subtract (For Time Series)