summarise_by_time {timetk} | R Documentation |
Summarise (for Time Series Data)
Description
summarise_by_time()
is a time-based variant of the popular dplyr::summarise()
function
that uses .date_var
to specify a date or date-time column and .by
to group the
calculation by groups like "5 seconds", "week", or "3 months".
summarise_by_time()
and summarize_by_time()
are synonyms.
Usage
summarise_by_time(
.data,
.date_var,
.by = "day",
...,
.type = c("floor", "ceiling", "round"),
.week_start = NULL
)
summarize_by_time(
.data,
.date_var,
.by = "day",
...,
.type = c("floor", "ceiling", "round"),
.week_start = NULL
)
Arguments
.data |
A |
.date_var |
A column containing date or date-time values to summarize. If missing, attempts to auto-detect date column. |
.by |
A time unit to summarise by.
Time units are collapsed using The value can be:
Arbitrary unique English abbreviations as in the |
... |
Name-value pairs of summary functions. The name will be the name of the variable in the result. The value can be:
|
.type |
One of "floor", "ceiling", or "round. Defaults to "floor". See |
.week_start |
when unit is weeks, specify the reference day. 7 represents Sunday and 1 represents Monday. |
Value
A tibble
or data.frame
Useful summary functions
Sum:
sum()
Count:
dplyr::n()
,dplyr::n_distinct()
Position:
dplyr::first()
,dplyr::last()
,dplyr::nth()
See Also
Time-Based dplyr functions:
-
summarise_by_time()
- Easily summarise using a date column. -
mutate_by_time()
- Simplifies applying mutations by time windows. -
filter_by_time()
- Quickly filter using date ranges. -
filter_period()
- Apply filtering expressions inside periods (windows) -
between_time()
- Range detection for date or date-time sequences. -
pad_by_time()
- Insert time series rows with regularly spaced timestamps -
condense_period()
- Convert to a different periodicity -
slidify()
- Turn any function into a sliding (rolling) function
Examples
# Libraries
library(dplyr)
# First value in each month
m4_daily %>%
group_by(id) %>%
summarise_by_time(
.date_var = date,
.by = "month", # Setup for monthly aggregation
# Summarization
value = first(value)
)
# Last value in each month (day is first day of next month with ceiling option)
m4_daily %>%
group_by(id) %>%
summarise_by_time(
.by = "month",
value = last(value),
.type = "ceiling"
) %>%
# Shift to the last day of the month
mutate(date = date %-time% "1 day")
# Total each year (.by is set to "year" now)
m4_daily %>%
group_by(id) %>%
summarise_by_time(
.by = "year",
value = sum(value)
)