mutate_by_time {timetk} | R Documentation |
Mutate (for Time Series Data)
Description
mutate_by_time()
is a time-based variant of the popular dplyr::mutate()
function
that uses .date_var
to specify a date or date-time column and .by
to group the
calculation by groups like "5 seconds", "week", or "3 months".
Usage
mutate_by_time(
.data,
.date_var,
.by = "day",
...,
.type = c("floor", "ceiling", "round")
)
Arguments
.data |
A |
.date_var |
A column containing date or date-time values to summarize. If missing, attempts to auto-detect date column. |
.by |
A time unit to summarise by.
Time units are collapsed using The value can be:
Arbitrary unique English abbreviations as in the |
... |
Name-value pairs. The name gives the name of the column in the output. The value can be:
|
.type |
One of "floor", "ceiling", or "round. Defaults to "floor". See |
Value
A tibble
or data.frame
See Also
Time-Based dplyr functions:
-
summarise_by_time()
- Easily summarise using a date column. -
mutate_by_time()
- Simplifies applying mutations by time windows. -
pad_by_time()
- Insert time series rows with regularly spaced timestamps -
filter_by_time()
- Quickly filter using date ranges. -
filter_period()
- Apply filtering expressions inside periods (windows) -
slice_period()
- Apply slice inside periods (windows) -
condense_period()
- Convert to a different periodicity -
between_time()
- Range detection for date or date-time sequences. -
slidify()
- Turn any function into a sliding (rolling) function
Examples
# Libraries
library(dplyr)
# First value in each month
m4_daily_first_by_month_tbl <- m4_daily %>%
group_by(id) %>%
mutate_by_time(
.date_var = date,
.by = "month", # Setup for monthly aggregation
# mutate recycles a single value
first_value_by_month = first(value)
)
m4_daily_first_by_month_tbl
# Visualize Time Series vs 1st Value Each Month
m4_daily_first_by_month_tbl %>%
tidyr::pivot_longer(value:first_value_by_month) %>%
plot_time_series(date, value, name,
.facet_scale = "free", .facet_ncol = 2,
.smooth = FALSE, .interactive = FALSE)