| standardize_vec {timetk} | R Documentation | 
Standardize to Mean 0, Standard Deviation 1 (Center & Scale)
Description
Standardization is commonly used to center and scale numeric features to prevent one from dominating in algorithms that require data to be on the same scale.
Usage
standardize_vec(x, mean = NULL, sd = NULL, silent = FALSE)
standardize_inv_vec(x, mean, sd)
Arguments
| x | A numeric vector. | 
| mean | The mean used to invert the standardization | 
| sd | The standard deviation used to invert the standardization process. | 
| silent | Whether or not to report the automated  | 
Details
Standardization vs Normalization
-  Standardization refers to a transformation that reduces the range to mean 0, standard deviation 1 
-  Normalization refers to a transformation that reduces the min-max range: (0, 1) 
Value
Returns a numeric vector with the standardization transformation applied.
See Also
- Normalization/Standardization: - standardize_vec(),- normalize_vec()
- Box Cox Transformation: - box_cox_vec()
- Lag Transformation: - lag_vec()
- Differencing Transformation: - diff_vec()
- Rolling Window Transformation: - slidify_vec()
- Loess Smoothing Transformation: - smooth_vec()
- Fourier Series: - fourier_vec()
- Missing Value Imputation for Time Series: - ts_impute_vec(),- ts_clean_vec()
Examples
library(dplyr)
d10_daily <- m4_daily %>% dplyr::filter(id == "D10")
# --- VECTOR ----
value_std <- standardize_vec(d10_daily$value)
value     <- standardize_inv_vec(value_std,
                                 mean = 2261.60682492582,
                                 sd   = 175.603721730477)
# --- MUTATE ----
m4_daily %>%
    group_by(id) %>%
    mutate(value_std = standardize_vec(value))