tk_augment_differences {timetk} | R Documentation |
Add many differenced columns to the data
Description
A handy function for adding multiple lagged difference values to a data frame.
Works with dplyr
groups too.
Usage
tk_augment_differences(
.data,
.value,
.lags = 1,
.differences = 1,
.log = FALSE,
.names = "auto"
)
Arguments
.data |
A tibble. |
.value |
One or more column(s) to have a transformation applied. Usage
of |
.lags |
One or more lags for the difference(s) |
.differences |
The number of differences to apply. |
.log |
If TRUE, applies log-differences. |
.names |
A vector of names for the new columns. Must be of same length as the number of output columns. Use "auto" to automatically rename the columns. |
Details
Benefits
This is a scalable function that is:
Designed to work with grouped data using
dplyr::group_by()
Add multiple differences by adding a sequence of differences using the
.lags
argument (e.g.lags = 1:20
)
Value
Returns a tibble
object describing the timeseries.
See Also
Augment Operations:
-
tk_augment_timeseries_signature()
- Group-wise augmentation of timestamp features -
tk_augment_holiday_signature()
- Group-wise augmentation of holiday features -
tk_augment_slidify()
- Group-wise augmentation of rolling functions -
tk_augment_lags()
- Group-wise augmentation of lagged data -
tk_augment_differences()
- Group-wise augmentation of differenced data -
tk_augment_fourier()
- Group-wise augmentation of fourier series
Underlying Function:
-
diff_vec()
- Underlying function that powerstk_augment_differences()
Examples
library(dplyr)
m4_monthly %>%
group_by(id) %>%
tk_augment_differences(value, .lags = 1:20)