normalize_vec {timetk} | R Documentation |
Normalize to Range (0, 1)
Description
Normalization is commonly used to center and scale numeric features to prevent one from dominating in algorithms that require data to be on the same scale.
Usage
normalize_vec(x, min = NULL, max = NULL, silent = FALSE)
normalize_inv_vec(x, min, max)
Arguments
x |
A numeric vector. |
min |
The population min value in the normalization process. |
max |
The population max value in the normalization process. |
silent |
Whether or not to report the automated |
Details
Standardization vs Normalization
-
Standardization refers to a transformation that reduces the range to mean 0, standard deviation 1
-
Normalization refers to a transformation that reduces the min-max range: (0, 1)
Value
A numeric
vector with the transformation applied.
See Also
Normalization/Standardization:
standardize_vec()
,normalize_vec()
Box Cox Transformation:
box_cox_vec()
Lag Transformation:
lag_vec()
Differencing Transformation:
diff_vec()
Rolling Window Transformation:
slidify_vec()
Loess Smoothing Transformation:
smooth_vec()
Fourier Series:
fourier_vec()
Missing Value Imputation for Time Series:
ts_impute_vec()
,ts_clean_vec()
Examples
library(dplyr)
d10_daily <- m4_daily %>% dplyr::filter(id == "D10")
# --- VECTOR ----
value_norm <- normalize_vec(d10_daily$value)
value <- normalize_inv_vec(value_norm,
min = 1781.6,
max = 2649.3)
# --- MUTATE ----
m4_daily %>%
group_by(id) %>%
mutate(value_norm = normalize_vec(value))