tk_augment_slidify {timetk} | R Documentation |
Add many rolling window calculations to the data
Description
Quickly use any function as a rolling function and apply to multiple .periods
.
Works with dplyr
groups too.
Usage
tk_augment_slidify(
.data,
.value,
.period,
.f,
...,
.align = c("center", "left", "right"),
.partial = FALSE,
.names = "auto"
)
Arguments
.data |
A tibble. |
.value |
One or more column(s) to have a transformation applied. Usage
of |
.period |
One or more periods for the rolling window(s) |
.f |
A summary |
... |
Optional arguments for the summary function |
.align |
Rolling functions generate |
.partial |
.partial Should the moving window be allowed to return partial (incomplete) windows instead of |
.names |
A vector of names for the new columns. Must be of same length as |
Details
tk_augment_slidify()
scales the slidify_vec()
function to multiple
time series .periods
. See slidify_vec()
for examples and usage of the core function
arguments.
Value
Returns a tibble
object describing the timeseries.
See Also
Augment Operations:
-
tk_augment_timeseries_signature()
- Group-wise augmentation of timestamp features -
tk_augment_holiday_signature()
- Group-wise augmentation of holiday features -
tk_augment_slidify()
- Group-wise augmentation of rolling functions -
tk_augment_lags()
- Group-wise augmentation of lagged data -
tk_augment_differences()
- Group-wise augmentation of differenced data -
tk_augment_fourier()
- Group-wise augmentation of fourier series
Underlying Function:
-
slidify_vec()
- The underlying function that powerstk_augment_slidify()
Examples
library(dplyr)
# Single Column | Multiple Rolling Windows
FANG %>%
select(symbol, date, adjusted) %>%
group_by(symbol) %>%
tk_augment_slidify(
.value = contains("adjust"),
# Multiple rolling windows
.period = c(10, 30, 60, 90),
.f = mean,
.partial = TRUE,
.names = stringr::str_c("MA_", c(10, 30, 60, 90))
) %>%
ungroup()
# Multiple Columns | Multiple Rolling Windows
FANG %>%
select(symbol, date, adjusted, volume) %>%
group_by(symbol) %>%
tk_augment_slidify(
.value = c(adjusted, volume),
.period = c(10, 30, 60, 90),
.f = mean,
.partial = TRUE
) %>%
ungroup()