Implementations of Semi-Supervised Learning Approaches for Classification


[Up] [Top]

Documentation for package ‘RSSL’ version 0.9.7

Help Pages

A B C D E F G H I K L M N P Q R S T U W

-- A --

add_missinglabels_mar Throw out labels at random
adjacency_knn Calculate knn adjacency matrix

-- B --

BaseClassifier Classifier used for enabling shared documenting of parameters

-- C --

c.CrossValidation Merge result of cross-validation runs on single datasets into a the same object
clapply Use mclapply conditional on not being in RStudio
cov_ml Biased (maximum likelihood) estimate of the covariance matrix
CrossValidationSSL Cross-validation in semi-supervised setting
CrossValidationSSL.list Cross-validation in semi-supervised setting
CrossValidationSSL.matrix Cross-validation in semi-supervised setting

-- D --

decisionvalues Decision values returned by a classifier for a set of objects
decisionvalues-method Decision values returned by a classifier for a set of objects
decisionvalues-method Predict using RSSL classifier
df_to_matrices Convert data.frame with missing labels to matrices
diabetes diabetes data for unit testing

-- E --

EMLeastSquaresClassifier An Expectation Maximization like approach to Semi-Supervised Least Squares Classification
EMLinearDiscriminantClassifier Semi-Supervised Linear Discriminant Analysis using Expectation Maximization
EMNearestMeanClassifier Semi-Supervised Nearest Mean Classifier using Expectation Maximization
EntropyRegularizedLogisticRegression Entropy Regularized Logistic Regression

-- F --

find_a_violated_label Find a violated label

-- G --

gaussian_kernel calculated the gaussian kernel matrix
generate2ClassGaussian Generate data from 2 Gaussian distributed classes
generateABA Generate data from 2 alternating classes
generateCrescentMoon Generate Crescent Moon dataset
generateFourClusters Generate Four Clusters dataset
generateParallelPlanes Generate Parallel planes
generateSlicedCookie Generate Sliced Cookie dataset
generateSpirals Generate Intersecting Spirals
generateTwoCircles Generate data from 2 circles
geom_classifier Plot RSSL classifier boundary (deprecated)
geom_linearclassifier Plot linear RSSL classifier boundary
GRFClassifier Label propagation using Gaussian Random Fields and Harmonic functions

-- H --

harmonic_function Direct R Translation of Xiaojin Zhu's Matlab code to determine harmonic solution

-- I --

ICLeastSquaresClassifier Implicitly Constrained Least Squares Classifier
ICLinearDiscriminantClassifier Implicitly Constrained Semi-supervised Linear Discriminant Classifier

-- K --

KernelICLeastSquaresClassifier Kernelized Implicitly Constrained Least Squares Classification
KernelLeastSquaresClassifier Kernelized Least Squares Classifier

-- L --

LaplacianKernelLeastSquaresClassifier Laplacian Regularized Least Squares Classifier
LaplacianSVM Laplacian SVM classifier
LearningCurveSSL Compute Semi-Supervised Learning Curve
LearningCurveSSL.matrix Compute Semi-Supervised Learning Curve
LeastSquaresClassifier Least Squares Classifier
LinearDiscriminantClassifier Linear Discriminant Classifier
LinearSVM Linear SVM Classifier
LinearSVM-class LinearSVM Class
LinearTSVM Linear CCCP Transductive SVM classifier
line_coefficients Loss of a classifier or regression function
line_coefficients-method Loss of a classifier or regression function
localDescent Local descent
LogisticLossClassifier Logistic Loss Classifier
LogisticLossClassifier-class LogisticLossClassifier
LogisticRegression (Regularized) Logistic Regression implementation
LogisticRegressionFast Logistic Regression implementation that uses R's glm
logsumexp Numerically more stable way to calculate log sum exp
loss Loss of a classifier or regression function
loss-method Loss of a classifier or regression function
losslogsum LogsumLoss of a classifier or regression function
losslogsum-method LogsumLoss of a classifier or regression function
losspart Loss of a classifier or regression function evaluated on partial labels
losspart-method Loss of a classifier or regression function evaluated on partial labels

-- M --

MajorityClassClassifier Majority Class Classifier
MCLinearDiscriminantClassifier Moment Constrained Semi-supervised Linear Discriminant Analysis.
MCNearestMeanClassifier Moment Constrained Semi-supervised Nearest Mean Classifier
MCPLDA Maximum Contrastive Pessimistic Likelihood Estimation for Linear Discriminant Analysis
measure_accuracy Performance measures used in classifier evaluation
measure_error Performance measures used in classifier evaluation
measure_losslab Performance measures used in classifier evaluation
measure_losstest Performance measures used in classifier evaluation
measure_losstrain Performance measures used in classifier evaluation
minimaxlda Implements weighted likelihood estimation for LDA
missing_labels Access the true labels for the objects with missing labels when they are stored as an attribute in a data frame

-- N --

NearestMeanClassifier Nearest Mean Classifier

-- P --

plot.CrossValidation Plot CrossValidation object
plot.LearningCurve Plot LearningCurve object
posterior Class Posteriors of a classifier
posterior-method Class Posteriors of a classifier
predict-method Predict for matrix scaling inspired by stdize from the PLS package
predict-method Predict using RSSL classifier
PreProcessing Preprocess the input to a classification function
PreProcessingPredict Preprocess the input for a new set of test objects for classifier
print.CrossValidation Print CrossValidation object
print.LearningCurve Print LearningCurve object
projection_simplex Project an n-dim vector y to the simplex Dn

-- Q --

QuadraticDiscriminantClassifier Quadratic Discriminant Classifier

-- R --

responsibilities Responsibilities assigned to the unlabeled objects
responsibilities-method Predict using RSSL classifier
rssl-formatting Show RSSL classifier
rssl-predict Predict using RSSL classifier

-- S --

S4VM Safe Semi-supervised Support Vector Machine (S4VM)
S4VM-class LinearSVM Class
sample_k_per_level Sample k indices per levels from a factor
scaleMatrix Matrix centering and scaling
SelfLearning Self-Learning approach to Semi-supervised Learning
show-method Show RSSL classifier
solve_svm SVM solve.QP implementation
split_dataset_ssl Create Train, Test and Unlabeled Set
split_random Randomly split dataset in multiple parts
SSLDataFrameToMatrices Convert data.frame to matrices for semi-supervised learners
stat_classifier Plot RSSL classifier boundaries
stderror Calculate the standard error of the mean from a vector of numbers
summary.CrossValidation Summary of Crossvalidation results
svdinv Inverse of a matrix using the singular value decomposition
svdinvsqrtm Taking the inverse of the square root of the matrix using the singular value decomposition
svdsqrtm Taking the square root of a matrix using the singular value decomposition
SVM SVM Classifier
svmlin svmlin implementation by Sindhwani & Keerthi (2006)
svmlin_example Test data from the svmlin implementation
svmproblem Train SVM

-- T --

testdata Example semi-supervised problem
threshold Refine the prediction to satisfy the balance constraint
true_labels Access the true labels when they are stored as an attribute in a data frame
TSVM Transductive SVM classifier using the convex concave procedure

-- U --

USMLeastSquaresClassifier Updated Second Moment Least Squares Classifier
USMLeastSquaresClassifier-class USMLeastSquaresClassifier

-- W --

wdbc wdbc data for unit testing
WellSVM WellSVM for Semi-supervised Learning
wellsvm_direct wellsvm implements the wellsvm algorithm as shown in [1].
WellSVM_SSL Convex relaxation of S3VM by label generation
WellSVM_supervised A degenerated version of WellSVM where the labels are complete, that is, supervised learning
wlda Implements weighted likelihood estimation for LDA
wlda_error Measures the expected error of the LDA model defined by m, p, and iW on the data set a, where weights w are potentially taken into account
wlda_loglik Measures the expected log-likelihood of the LDA model defined by m, p, and iW on the data set a, where weights w are potentially taken into account