LogisticRegression {RSSL} | R Documentation |
(Regularized) Logistic Regression implementation
Description
Implementation of Logistic Regression that is useful for comparisons with semi-supervised logistic regression implementations, such as EntropyRegularizedLogisticRegression
.
Usage
LogisticRegression(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
init = NA, x_center = FALSE)
Arguments
X |
matrix; Design matrix for labeled data |
y |
factor or integer vector; Label vector |
lambda |
numeric; L2 regularization parameter |
intercept |
logical; Whether an intercept should be included |
scale |
logical; Should the features be normalized? (default: FALSE) |
init |
numeric; Initialization of parameters for the optimization |
x_center |
logical; Should the features be centered? |
See Also
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearSVM
,
LinearTSVM()
,
LogisticLossClassifier
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SVM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()