NearestMeanClassifier {RSSL} | R Documentation |
Nearest Mean Classifier
Description
Implementation of the nearest mean classifier modeled. Classes are modeled as gaussians with equal, spherical covariance matrices. The optimal covariance matrix and means for the classes are found using maximum likelihood, which, in this case, has a closed form solution. To get true nearest mean classification, set prior as a matrix with equal probability for all classes, i.e. matrix(0.5,2)
.
Usage
NearestMeanClassifier(X, y, prior = NULL, x_center = FALSE,
scale = FALSE)
Arguments
X |
matrix; Design matrix for labeled data |
y |
factor or integer vector; Label vector |
prior |
matrix; Class prior probabilities. If NULL, this will be estimated from the data |
x_center |
logical; Should the features be centered? |
scale |
logical; Should the features be normalized? (default: FALSE) |
Value
S4 object of class LeastSquaresClassifier with the following slots:
modelform |
weight vector |
prior |
the prior probabilities of the classes |
mean |
the estimates means of the classes |
sigma |
The estimated covariance matrix |
classnames |
a vector with the classnames for each of the classes |
scaling |
scaling object used to transform new observations |
See Also
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearSVM
,
LinearTSVM()
,
LogisticLossClassifier
,
LogisticRegression
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SVM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()