LaplacianKernelLeastSquaresClassifier {RSSL} | R Documentation |
Laplacian Regularized Least Squares Classifier
Description
Implements manifold regularization through the graph Laplacian as proposed by Belkin et al. 2006. As an adjacency matrix, we use the k nearest neighbour graph based on a chosen distance (default: euclidean).
Usage
LaplacianKernelLeastSquaresClassifier(X, y, X_u, lambda = 0, gamma = 0,
kernel = kernlab::vanilladot(), adjacency_distance = "euclidean",
adjacency_k = 6, x_center = TRUE, scale = TRUE, y_scale = TRUE,
normalized_laplacian = FALSE)
Arguments
X |
matrix; Design matrix for labeled data |
y |
factor or integer vector; Label vector |
X_u |
matrix; Design matrix for unlabeled data |
lambda |
numeric; L2 regularization parameter |
gamma |
numeric; Weight of the unlabeled data |
kernel |
kernlab::kernel to use |
adjacency_distance |
character; distance metric used to construct adjacency graph from the dist function. Default: "euclidean" |
adjacency_k |
integer; Number of of neighbours used to construct adjacency graph. |
x_center |
logical; Should the features be centered? |
scale |
logical; Should the features be normalized? (default: FALSE) |
y_scale |
logical; whether the target vector should be centered |
normalized_laplacian |
logical; If TRUE use the normalized Laplacian, otherwise, the Laplacian is used |
References
Belkin, M., Niyogi, P. & Sindhwani, V., 2006. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, pp.2399-2434.
See Also
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearSVM
,
LinearTSVM()
,
LogisticLossClassifier
,
LogisticRegression
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SVM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()
Examples
library(RSSL)
library(ggplot2)
library(dplyr)
## Example 1: Half moons
# Generate a dataset
set.seed(2)
df_orig <- generateCrescentMoon(100,sigma = 0.3)
df <- df_orig %>%
add_missinglabels_mar(Class~.,0.98)
lambda <- 0.01
gamma <- 10000
rbf_param <- 0.125
# Train classifiers
## Not run:
class_sup <- KernelLeastSquaresClassifier(
Class~.,df,
kernel=kernlab::rbfdot(rbf_param),
lambda=lambda,scale=FALSE)
class_lap <- LaplacianKernelLeastSquaresClassifier(
Class~.,df,
kernel=kernlab::rbfdot(rbf_param),
lambda=lambda,gamma=gamma,
normalized_laplacian = TRUE,
scale=FALSE)
classifiers <- list("Lap"=class_lap,"Sup"=class_sup)
# Plot classifiers (can take a couple of seconds)
df %>%
ggplot(aes(x=X1,y=X2,color=Class)) +
geom_point() +
coord_equal() +
stat_classifier(aes(linetype=..classifier..),
classifiers = classifiers ,
color="black")
# Calculate the loss
lapply(classifiers,function(c) mean(loss(c,df_orig)))
## End(Not run)
## Example 2: Two circles
set.seed(1)
df_orig <- generateTwoCircles(1000,noise=0.05)
df <- df_orig %>%
add_missinglabels_mar(Class~.,0.994)
lambda <- 10e-12
gamma <- 100
rbf_param <- 0.1
# Train classifiers
## Not run:
class_sup <- KernelLeastSquaresClassifier(
Class~.,df,
kernel=kernlab::rbfdot(rbf_param),
lambda=lambda,scale=TRUE)
class_lap <- LaplacianKernelLeastSquaresClassifier(
Class~.,df,
kernel=kernlab::rbfdot(rbf_param),
adjacency_k = 30,
lambda=lambda,gamma=gamma,
normalized_laplacian = TRUE,
scale=TRUE)
classifiers <- list("Lap"=class_lap,"Sup"=class_sup)
# Plot classifiers (Can take a couple of seconds)
df %>%
ggplot(aes(x=X1,y=X2,color=Class,size=Class)) +
scale_size_manual(values=c("1"=3,"2"=3),na.value=1) +
geom_point() +
coord_equal() +
stat_classifier(aes(linetype=..classifier..),
classifiers = classifiers ,
color="black",size=1)
## End(Not run)