LogisticLossClassifier {RSSL} | R Documentation |
Logistic Loss Classifier
Description
Find the linear classifier which minimizing the logistic loss on the training set, optionally using L2 regularization.
Usage
LogisticLossClassifier(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
init = NA, x_center = FALSE, ...)
Arguments
X |
Design matrix, intercept term is added within the function |
y |
Vector with class assignments |
lambda |
Regularization parameter used for l2 regularization |
intercept |
TRUE if an intercept should be added to the model |
scale |
If TRUE, apply a z-transform to all observations in X and X_u before running the regression |
init |
Starting parameter vector for gradient descent |
x_center |
logical; Whether the feature vectors should be centered |
... |
additional arguments |
Value
S4 object with the following slots
w |
the weight vector of the linear classifier |
classnames |
vector with names of the classes |
See Also
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearSVM
,
LinearTSVM()
,
LogisticRegression
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SVM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()