ICLinearDiscriminantClassifier {RSSL} | R Documentation |
Implicitly Constrained Semi-supervised Linear Discriminant Classifier
Description
Semi-supervised version of Linear Discriminant Analysis using implicit constraints as described in (Krijthe & Loog 2014). This method finds the soft labeling of the unlabeled objects, whose resulting LDA solution gives the highest log-likelihood when evaluated on the labeled objects only. See also ICLeastSquaresClassifier
.
Usage
ICLinearDiscriminantClassifier(X, y, X_u, prior = NULL, scale = FALSE,
init = NULL, sup_prior = FALSE, x_center = FALSE, ...)
Arguments
X |
design matrix of the labeled objects |
y |
vector with labels |
X_u |
design matrix of the labeled objects |
prior |
set a fixed class prior |
scale |
logical; Should the features be normalized? (default: FALSE) |
init |
not currently used |
sup_prior |
logical; use the prior estimates based only on the labeled data, not the imputed labels (default: FALSE) |
x_center |
logical; Whether the data should be centered |
... |
Additional Parameters, Not used |
References
Krijthe, J.H. & Loog, M., 2014. Implicitly Constrained Semi-Supervised Linear Discriminant Analysis. In International Conference on Pattern Recognition. Stockholm, pp. 3762-3767.
See Also
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearSVM
,
LinearTSVM()
,
LogisticLossClassifier
,
LogisticRegression
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SVM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()