loss {RSSL} | R Documentation |
Loss of a classifier or regression function
Description
Hinge loss on new objects of a trained LinearSVM
Hinge loss on new objects of a trained SVM
Usage
loss(object, ...)
## S4 method for signature 'LeastSquaresClassifier'
loss(object, newdata, y = NULL, ...)
## S4 method for signature 'NormalBasedClassifier'
loss(object, newdata, y = NULL)
## S4 method for signature 'LogisticRegression'
loss(object, newdata, y = NULL)
## S4 method for signature 'KernelLeastSquaresClassifier'
loss(object, newdata, y = NULL, ...)
## S4 method for signature 'LinearSVM'
loss(object, newdata, y = NULL)
## S4 method for signature 'LogisticLossClassifier'
loss(object, newdata, y = NULL, ...)
## S4 method for signature 'MajorityClassClassifier'
loss(object, newdata, y = NULL)
## S4 method for signature 'SVM'
loss(object, newdata, y = NULL)
## S4 method for signature 'SelfLearning'
loss(object, newdata, y = NULL, ...)
## S4 method for signature 'USMLeastSquaresClassifier'
loss(object, newdata, y = NULL, ...)
## S4 method for signature 'svmlinClassifier'
loss(object, newdata, y = NULL)
Arguments
object |
Classifier; Trained Classifier |
... |
additional parameters |
newdata |
data.frame; object with test data |
y |
factor; True classes of the test data |
Value
numeric; the total loss on the test data
[Package RSSL version 0.9.7 Index]