SVM {RSSL} | R Documentation |
SVM Classifier
Description
Support Vector Machine implementation using the quadprog
solver.
Usage
SVM(X, y, C = 1, kernel = NULL, scale = TRUE, intercept = FALSE,
x_center = TRUE, eps = 1e-09)
Arguments
X |
matrix; Design matrix for labeled data |
y |
factor or integer vector; Label vector |
C |
numeric; Cost variable |
kernel |
kernlab::kernel to use |
scale |
logical; Should the features be normalized? (default: FALSE) |
intercept |
logical; Whether an intercept should be included |
x_center |
logical; Should the features be centered? |
eps |
numeric; Small value to ensure positive definiteness of the matrix in the QP formulation |
Details
This implementation will typically be slower and use more memory than the svmlib implementation in the e1071 package. It is, however, useful for comparisons with the TSVM
implementation.
Value
S4 object of type SVM
See Also
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearSVM
,
LinearTSVM()
,
LogisticLossClassifier
,
LogisticRegression
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()