EntropyRegularizedLogisticRegression {RSSL} | R Documentation |
Entropy Regularized Logistic Regression
Description
R Implementation of entropy regularized logistic regression implementation as proposed by Grandvalet & Bengio (2005). An extra term is added to the objective function of logistic regression that penalizes the entropy of the posterior measured on the unlabeled examples.
Usage
EntropyRegularizedLogisticRegression(X, y, X_u = NULL, lambda = 0,
lambda_entropy = 1, intercept = TRUE, init = NA, scale = FALSE,
x_center = FALSE)
Arguments
X |
matrix; Design matrix for labeled data |
y |
factor or integer vector; Label vector |
X_u |
matrix; Design matrix for unlabeled data |
lambda |
l2 Regularization |
lambda_entropy |
Weight of the labeled observations compared to the unlabeled observations |
intercept |
logical; Whether an intercept should be included |
init |
Initial parameters for the gradient descent |
scale |
logical; Should the features be normalized? (default: FALSE) |
x_center |
logical; Should the features be centered? |
Value
S4 object of class EntropyRegularizedLogisticRegression with the following slots:
w |
weight vector |
classnames |
the names of the classes |
References
Grandvalet, Y. & Bengio, Y., 2005. Semi-supervised learning by entropy minimization. In L. K. Saul, Y. Weiss, & L. Bottou, eds. Advances in Neural Information Processing Systems 17. Cambridge, MA: MIT Press, pp. 529-536.
Examples
library(RSSL)
library(ggplot2)
library(dplyr)
# An example where ERLR finds a low-density separator, which is not
# the correct solution.
set.seed(1)
df <- generateSlicedCookie(1000,expected=FALSE) %>%
add_missinglabels_mar(Class~.,0.98)
class_lr <- LogisticRegression(Class~.,df,lambda = 0.01)
class_erlr <- EntropyRegularizedLogisticRegression(Class~.,df,
lambda=0.01,lambda_entropy = 100)
ggplot(df,aes(x=X1,y=X2,color=Class)) +
geom_point() +
stat_classifier(aes(linetype=..classifier..),
classifiers = list("LR"=class_lr,"ERLR"=class_erlr)) +
scale_y_continuous(limits=c(-2,2)) +
scale_x_continuous(limits=c(-2,2))
df_test <- generateSlicedCookie(1000,expected=FALSE)
mean(predict(class_lr,df_test)==df_test$Class)
mean(predict(class_erlr,df_test)==df_test$Class)