Composite Indicator Construction and Analysis

[Up] [Top]

Documentation for package ‘COINr’ version 1.1.2

Help Pages


-- A --

Aggregate Aggregate data
Aggregate.coin Aggregate indicators Aggregate data frame
Aggregate.purse Aggregate indicators
approx_df Interpolate time-indexed data frame
ASEM_iData ASEM raw indicator data
ASEM_iData_p ASEM raw panel data
ASEM_iMeta ASEM indicator metadata
a_amean Weighted arithmetic mean
a_copeland Copeland scores
a_gmean Weighted geometric mean
a_hmean Weighted harmonic mean

-- B --

boxcox Box Cox transformation
build_example_coin Build ASEM example coin
build_example_purse Build example purse

-- C --

CAGR Compound annual growth rate
change_ind Add and remove indicators
check_iData Check iData
check_iMeta Check iMeta
check_SkewKurt Check skew and kurtosis of a vector
COIN_to_coin Convert a COIN to a coin
compare_coins Compare two coins
compare_coins_multi Compare multiple coins
compare_df Compare two data frames

-- D --

Denominate Denominate data
Denominate.coin Denominate data set in a coin Denominate data sets by other variables
Denominate.purse Denominate a data set within a purse.

-- E --

export_to_excel Export a coin or purse to Excel
export_to_excel.coin Export a coin to Excel
export_to_excel.purse Export a purse to Excel

-- G --

get_corr Get correlations
get_corr_flags Find highly-correlated indicators within groups
get_cronbach Cronbach's alpha
get_data Get subsets of indicator data
get_data.coin Get subsets of indicator data
get_data.purse Get subsets of indicator data
get_data_avail Get data availability of units
get_data_avail.coin Get data availability of units Get data availability of units
get_denom_corr Correlations between indicators and denominators
get_dset Gets a named data set and performs checks
get_dset.coin Gets a named data set and performs checks
get_dset.purse Gets a named data set and performs checks
get_eff_weights Get effective weights
get_noisy_weights Noisy replications of weights
get_opt_weights Weight optimisation
get_PCA Perform PCA on a coin
get_pvals P-values for correlations in a data frame or matrix
get_results Results summary tables
get_sensitivity Sensitivity and uncertainty analysis of a coin
get_stats Statistics of columns/indicators
get_stats.coin Statistics of indicators Statistics of columns
get_str_weak Generate strengths and weaknesses for a specified unit
get_trends Get time trends
get_unit_summary Generate unit summary table

-- I --

import_coin_tool Import data directly from COIN Tool
Impute Imputation of missing data
Impute.coin Impute a data set in a coin Impute a data frame
Impute.numeric Impute a numeric vector
Impute.purse Impute data sets in a purse
impute_panel Impute panel data
is.coin Check if object is coin class
is.purse Check if object is purse class
i_mean Impute by mean
i_mean_grp Impute by group mean
i_median Impute by median
i_median_grp Impute by group median

-- K --

kurt Calculate kurtosis

-- L --

log_CT Log-transform a vector
log_CT_orig Log-transform a vector
log_CT_plus Log transform a vector (skew corrected)
log_GII Log-transform a vector

-- N --

names_to_codes Generate short codes from long names
new_coin Create a new coin
Normalise Normalise data
Normalise.coin Create a normalised data set Normalise a data frame
Normalise.numeric Normalise a numeric vector
Normalise.purse Create normalised data sets in a purse of coins
n_borda Normalise using Borda scores
n_dist2max Normalise as distance to maximum value
n_dist2ref Normalise as distance to reference value
n_dist2targ Normalise as distance to target
n_fracmax Normalise as fraction of max value
n_goalposts Normalise using goalpost method
n_minmax Minmax a vector
n_prank Normalise using percentile ranks
n_rank Normalise using ranks
n_scaled Scale a vector
n_zscore Z-score a vector

-- O --

outrankMatrix Outranking matrix

-- P --

plot_bar Bar chart
plot_corr Static heatmaps of correlation matrices
plot_dist Static indicator distribution plots
plot_dot Dot plots of single indicator with highlighting
plot_framework Framework plots
plot_scatter Scatter plot of two variables
plot_sensitivity Plot sensitivity indices
plot_uncertainty Plot ranks from an uncertainty/sensitivity analysis
prc_change Percentage change of time series
print.coin Print coin
print.purse Print purse

-- Q --

qNormalise Quick normalisation
qNormalise.coin Quick normalisation of a coin Quick normalisation of a data frame
qNormalise.purse Quick normalisation of a purse
qTreat Quick outlier treatment
qTreat.coin Quick outlier treatment of a coin Quick outlier treatment of a data frame
qTreat.purse Quick outlier treatment of a purse

-- R --

rank_df Convert a data frame to ranks
Regen Regenerate a coin or purse
Regen.coin Regenerate a coin
Regen.purse Regenerate a purse
remove_elements Check the effect of removing indicators or aggregates
replace_df Replace multiple values in a data frame
round_df Round down a data frame

-- S --

SA_estimate Estimate sensitivity indices
SA_sample Generate sample for sensitivity analysis
Screen Screen units based on data availability
Screen.coin Screen units based on data availability Screen units based on data availability
Screen.purse Screen units based on data availability
signif_df Round a data frame to specified significant figures
skew Calculate skewness

-- T --

Treat Treat outliers
Treat.coin Treat a data set in a coin for outliers Treat a data frame for outliers
Treat.numeric Treat a numeric vector for outliers
Treat.purse Treat a purse of coins for outliers

-- W --

winsorise Winsorise a vector
WorldDenoms World denomination data