checkClosedUnitBall |
Domain check for closed unit ball \{\vec{x} \in R^n : \Vert \vec{x} \Vert_{2} <=q 1\} |
checkClosedUnitCube |
Domain check for closed unit hypercube [0,1]^n |
checkPos |
Domain check for [0,Inf)^n |
checkRn |
Domain check for R^n |
checkStandardSimplex |
Domain check for standard simplex \{\vec{x} \in R^n : x_i >=q 0, \Vert \vec{x} \Vert_1 <=q 1 \} |
checkUnitSphere |
Domain check for unit sphere \{\vec{x} \in R^n : \Vert \vec{x} \Vert_{2} = 1\} |
domainCheck |
Check if node points are in the domain of a test function instance |
domainCheck-method |
Check if node points are in the domain of a test function instance |
domainCheckP |
Check if node points are in the domain of a test function instance ("overload" of domainCheck with additional parameter) |
domainCheckP-method |
Check if node points are in the domain of a test function instance ("overload" of domainCheck with additional parameter) |
evaluate |
Evaluate test function instance for a set of node points |
evaluate-method |
Evaluate test function instance for a set of node points |
exactIntegral |
Get exact integral for test function instance |
exactIntegral-method |
Get exact integral for test function instance |
getIntegrationDomain |
Get description of integration domain for test function instance |
getIntegrationDomain-method |
Get description of integration domain for test function instance |
getReferences |
Get references for test function instance |
getReferences-method |
Get references for test function instance |
getTags |
Get tags for test function instance |
getTags-method |
Get tags for test function instance |
multIntTestFunc |
multIntTestFunc: A package to define test functions for multivariate numerical integration. |
pIntRule |
Product rule for numerical quadrature from univariate nodes and weights |
Pn_lognormalDensity |
An S4 class to represent the function \frac{1}{(prod_{i=1}^{n}x_i) sqrt{(2pi)^n\det(Sigma)}}\exp(-((\ln(\vec{x})-\vec{mu})^{T}Sigma^{-1}(\ln(\vec{x})-\vec{mu}))/2) on [0,Inf)^n |
Pn_lognormalDensity-class |
An S4 class to represent the function \frac{1}{(prod_{i=1}^{n}x_i) sqrt{(2pi)^n\det(Sigma)}}\exp(-((\ln(\vec{x})-\vec{mu})^{T}Sigma^{-1}(\ln(\vec{x})-\vec{mu}))/2) on [0,Inf)^n |
Pn_logtDensity |
An S4 class to represent the function (prod_{i=1}^n x_i^{-1})\frac{Gamma<=ft[(nu+n)/2\right]}{Gamma(nu/2)nu^{n/2}pi^{n/2}<=ft|{Sigma}\right|^{1/2}}<=ft[1+\frac{1}{nu}({\log(\vec{x})}-{\vec{delta}})^{T}{Sigma}^{-1}({\log(\vec{x})}-{\vec{delta}})\right]^{-(nu+n)/2} on [0,Inf)^n |
Pn_logtDensity-class |
An S4 class to represent the function (prod_{i=1}^n x_i^{-1})\frac{Gamma<=ft[(nu+n)/2\right]}{Gamma(nu/2)nu^{n/2}pi^{n/2}<=ft|{Sigma}\right|^{1/2}}<=ft[1+\frac{1}{nu}({\log(\vec{x})}-{\vec{delta}})^{T}{Sigma}^{-1}({\log(\vec{x})}-{\vec{delta}})\right]^{-(nu+n)/2} on [0,Inf)^n |
Rn_floorNorm |
An S4 class to represent the function \frac{Gamma(n/2+1)}{pi^{n/2}(1+\lfloor \Vert \vec{x} \Vert_2^n \rfloor)^s} on R^n |
Rn_floorNorm-class |
An S4 class to represent the function \frac{Gamma(n/2+1)}{pi^{n/2}(1+\lfloor \Vert \vec{x} \Vert_2^n \rfloor)^s} on R^n |
Rn_Gauss |
An S4 class to represent the function \exp(-\vec{x}\cdot\vec{x}) on R^n |
Rn_Gauss-class |
An S4 class to represent the function \exp(-\vec{x}\cdot\vec{x}) on R^n |
Rn_normalDensity |
An S4 class to represent the function \frac{1}{sqrt{(2pi)^n\det(Sigma)}}\exp(-((\vec{x}-\vec{mu})^{T}Sigma^{-1}(\vec{x}-\vec{mu}))/2) on R^n |
Rn_normalDensity-class |
An S4 class to represent the function \frac{1}{sqrt{(2pi)^n\det(Sigma)}}\exp(-((\vec{x}-\vec{mu})^{T}Sigma^{-1}(\vec{x}-\vec{mu}))/2) on R^n |
Rn_tDensity |
An S4 class to represent the function \frac{Gamma<=ft[(nu+n)/2\right]}{Gamma(nu/2)nu^{n/2}pi^{n/2}<=ft|{Sigma}\right|^{1/2}}<=ft[1+\frac{1}{nu}({\vec{x}}-{\vec{delta}})^{T}{Sigma}^{-1}({\vec{x}}-{\vec{delta}})\right]^{-(nu+n)/2} on R^n |
Rn_tDensity-class |
An S4 class to represent the function \frac{Gamma<=ft[(nu+n)/2\right]}{Gamma(nu/2)nu^{n/2}pi^{n/2}<=ft|{Sigma}\right|^{1/2}}<=ft[1+\frac{1}{nu}({\vec{x}}-{\vec{delta}})^{T}{Sigma}^{-1}({\vec{x}}-{\vec{delta}})\right]^{-(nu+n)/2} on R^n |
standardSimplex_Dirichlet |
An S4 class to represent the function prod_{i=1}^{n}x_i^{v_i-1}(1 - x_1 - ... - x_n)^{v_{n+1}-1} on T_n |
standardSimplex_Dirichlet-class |
An S4 class to represent the function prod_{i=1}^{n}x_i^{v_i-1}(1 - x_1 - ... - x_n)^{v_{n+1}-1} on T_n |
standardSimplex_exp_sum |
An S4 class to represent the function \exp(-c(x_1 + ... + x_n)) on T_n |
standardSimplex_exp_sum-class |
An S4 class to represent the function \exp(-c(x_1 + ... + x_n)) on T_n |
unitBall_normGauss |
An S4 class to represent the function \frac{1}{(2pi)^{n/2}}\exp(-\Vert\vec{x}\Vert_2^2/2) on B^{n} |
unitBall_normGauss-class |
An S4 class to represent the function \frac{1}{(2pi)^{n/2}}\exp(-\Vert\vec{x}\Vert_2^2/2) on B^{n} |
unitBall_polynomial |
An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on B_n |
unitBall_polynomial-class |
An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on B_n |
unitCube_BFN4 |
An S4 class to represent the function sum_{i=1}^{n}(-1)^i prod_{j=1}^{i} x_j on [0,1]^n |
unitCube_BFN4-class |
An S4 class to represent the function sum_{i=1}^{n}(-1)^i prod_{j=1}^{i} x_j on [0,1]^n |
unitCube_cos2 |
An S4 class to represent the function (\cos(\vec{x}\cdot\vec{v}))^2 on [0,1]^n |
unitCube_cos2-class |
An S4 class to represent the function (\cos(\vec{x}\cdot\vec{v}))^2 on [0,1]^n |
unitCube_floor |
An S4 class to represent the function \lfloor x_1 + ... + x_n \rfloor on [0,1]^n |
unitCube_floor-class |
An S4 class to represent the function \lfloor x_1 + ... + x_n \rfloor on [0,1]^n |
unitCube_max |
An S4 class to represent the function \max(x_1,...,x_n) on [0,1]^n |
unitCube_max-class |
An S4 class to represent the function \max(x_1,...,x_n) on [0,1]^n |
unitSphere_innerProduct1 |
An S4 class to represent the function (\vec{x}\cdot\vec{a})(\vec{x}\cdot\vec{b}) on S^{n-1} |
unitSphere_innerProduct1-class |
An S4 class to represent the function (\vec{x}\cdot\vec{a})(\vec{x}\cdot\vec{b}) on S^{n-1} |
unitSphere_polynomial |
An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on S^{n-1} |
unitSphere_polynomial-class |
An S4 class to represent the function prod_{i=1}^n x_i^{a_i} on S^{n-1} |