Pn_logtDensity-class {multIntTestFunc} | R Documentation |
An S4 class to represent the function (\prod_{i=1}^n x_i^{-1})\frac{\Gamma\left[(\nu+n)/2\right]}{\Gamma(\nu/2)\nu^{n/2}\pi^{n/2}\left|{\Sigma}\right|^{1/2}}\left[1+\frac{1}{\nu}({\log(\vec{x})}-{\vec{\delta}})^{T}{\Sigma}^{-1}({\log(\vec{x})}-{\vec{\delta}})\right]^{-(\nu+n)/2}
on [0,\infty)^n
Description
Implementation of the function
f \colon [0,\infty)^n \to (0,\infty),\, \vec{x} \mapsto f(\vec{x}) = (\prod_{i=1}^n x_i^{-1})\frac{\Gamma\left[(\nu+n)/2\right]}{\Gamma(\nu/2)\nu^{n/2}\pi^{n/2}\left|{\Sigma}\right|^{1/2}}\left[1+\frac{1}{\nu}({\log(\vec{x})}-{\vec{\delta}})^{T}{\Sigma}^{-1}({\log(\vec{x})}-{\vec{\delta}})\right]^{-(\nu+n)/2},
where n \in \{1,2,3,\ldots\}
is the dimension of the integration domain [0,\infty)^n = \times_{i=1}^n [0,\infty)
.
In this case the integral is know to be
\int_{[0,\infty)^n} f(\vec{x}) d\vec{x} = 1.
Details
The instance needs to be created with four parameters representing the dimension n
, the location vector \vec{\delta}
, the variance-covariance matrix \Sigma
which needs to be symmetric positive definite and the degrees of freedom parameter \nu
.
Slots
dim
An integer that captures the dimension
delta
A vector of size dim with real entries.
sigma
A matrix of size dim x dim that is symmetric positive definite.
df
A positive numerical value representing the degrees of freedom.
Author(s)
Klaus Herrmann
Examples
n <- as.integer(3)
f <- new("Pn_logtDensity",dim=n,delta=rep(0,n),sigma=diag(n),df=3)