| unitBall_polynomial-class {multIntTestFunc} | R Documentation |
An S4 class to represent the function \prod_{i=1}^n x_i^{a_i} on B_n
Description
Implementation of the function
f \colon B_n \to R,\, \vec{x} \mapsto f(\vec{x}) = \prod_{i=1}^n x_i^{a_i},
where n \in \{1,2,3,\ldots\} is the dimension of the integration domain B_n = \{\vec{x}\in R^n : \Vert \vec{x} \Vert_2 \leq 1\} and a_i \in \{0,1,2,3,\ldots\}, i=1,\ldots,n, are parameters.
If at least one of the coefficients a_i is odd, i.e., a_i\in\{1,3,5,7,\ldots\} for at leas one i=1,\ldots,n, the integral is zero, otherwise the integral is known to be
\int_{B_n} f(\vec{x}) d\vec{x} = 2\frac{\prod_{i=1}^n\Gamma(b_i)}{\Gamma(\sum_{i=1}^n b_i)(n+\sum_{i=1}^n a_i)},
where b_i = (a_i+1)/2.
Details
The instance needs to be created with two parameters representing the dimension n and a n-dimensional vector of integers (including 0) representing the exponents.
Slots
dimAn integer that captures the dimension
expoAn vector that captures the exponents
Author(s)
Klaus Herrmann
Examples
n <- as.integer(3)
f <- new("unitBall_polynomial",dim=n,expo=c(1,2,3))