| Rn_tDensity-class {multIntTestFunc} | R Documentation |
An S4 class to represent the function \frac{\Gamma\left[(\nu+n)/2\right]}{\Gamma(\nu/2)\nu^{n/2}\pi^{n/2}\left|{\Sigma}\right|^{1/2}}\left[1+\frac{1}{\nu}({\vec{x}}-{\vec{\delta}})^{T}{\Sigma}^{-1}({\vec{x}}-{\vec{\delta}})\right]^{-(\nu+n)/2} on R^n
Description
Implementation of the function
f \colon R^n \to (0,\infty),\, \vec{x} \mapsto f(\vec{x}) = \frac{\Gamma\left[(\nu+n)/2\right]}{\Gamma(\nu/2)\nu^{n/2}\pi^{n/2}\left|{\Sigma}\right|^{1/2}}\left[1+\frac{1}{\nu}({\vec{x}}-{\vec{\delta}})^{T}{\Sigma}^{-1}({\vec{x}}-{\vec{\delta}})\right]^{-(\nu+n)/2},
where n \in \{1,2,3,\ldots\} is the dimension of the integration domain R^n = \times_{i=1}^n R.
In this case the integral is know to be
\int_{R^n} f(\vec{x}) d\vec{x} = 1.
Details
The instance needs to be created with four parameters representing the dimension n, the location vector \vec{\delta}, the variance-covariance matrix \Sigma which needs to be symmetric positive definite and the degrees of freedom parameter \nu.
Slots
dimAn integer that captures the dimension
deltaA vector of size dim with real entries.
sigmaA matrix of size dim x dim that is symmetric positive definite.
dfA positive numerical value representing the degrees of freedom.
Author(s)
Klaus Herrmann
Examples
n <- as.integer(3)
f <- new("Rn_tDensity",dim=n,delta=rep(0,n),sigma=diag(n),df=3)