standardSimplex_Dirichlet-class {multIntTestFunc} | R Documentation |
An S4 class to represent the function ∏i=1nxivi−1(1−x1−…−xn)vn+1−1
on Tn
Description
Implementation of the function
f:Tn→(0,∞),x↦f(x)=∏i=1nxivi−1(1−x1−…−xn)vn+1−1,
where n∈{1,2,3,…}
is the dimension of the integration domain Tn={x∈Rn:xi≥0,∥x∥1≤1}
and vi>0
, i=1,…,n+1
, are constants.
The integral is known to be
∫Tnf(x)dx=Γ(∑i=1n+1vi)∏i=1n+1Γ(vi),
where vi>0
for i=1,…,n+1
.
Details
The instance needs to be created with two parameters representing the dimension n
and the vector of positive parameters.
Slots
dim
An integer that captures the dimension
v
A vector of dimension n+1
with positive entries representing the constants
Author(s)
Klaus Herrmann
Examples
n <- as.integer(3)
f <- new("standardSimplex_Dirichlet",dim=n,v=c(1,2,3,4))
[Package
multIntTestFunc version 0.2.0
Index]