standardSimplex_Dirichlet-class {multIntTestFunc} | R Documentation |
An S4 class to represent the function \prod_{i=1}^{n}x_i^{v_i-1}(1 - x_1 - \ldots - x_n)^{v_{n+1}-1}
on T_n
Description
Implementation of the function
f \colon T_n \to (0,\infty),\, \vec{x} \mapsto f(\vec{x}) = \prod_{i=1}^{n}x_i^{v_i-1}(1 - x_1 - \ldots - x_n)^{v_{n+1}-1},
where n \in \{1,2,3,\ldots\}
is the dimension of the integration domain T_n = \{\vec{x} \in \R^n : x_i\geq 0, \Vert \vec{x} \Vert_1 \leq 1\}
and v_i>0
, i=1,\ldots,n+1
, are constants.
The integral is known to be
\int_{T_n} f(\vec{x}) d\vec{x} = \frac{\prod_{i=1}^{n+1}\Gamma(v_i)}{\Gamma(\sum_{i=1}^{n+1}v_i)},
where v_i>0
for i=1,\ldots,n+1
.
Details
The instance needs to be created with two parameters representing the dimension n
and the vector of positive parameters.
Slots
dim
An integer that captures the dimension
v
A vector of dimension
n+1
with positive entries representing the constants
Author(s)
Klaus Herrmann
Examples
n <- as.integer(3)
f <- new("standardSimplex_Dirichlet",dim=n,v=c(1,2,3,4))
[Package multIntTestFunc version 0.2.0 Index]