Rn_normalDensity-class {multIntTestFunc}R Documentation

An S4 class to represent the function 1(2π)ndet(Σ)exp(((xμ)TΣ1(xμ))/2)\frac{1}{\sqrt{(2\pi)^n\det(\Sigma)}}\exp(-((\vec{x}-\vec{\mu})^{T}\Sigma^{-1}(\vec{x}-\vec{\mu}))/2) on RnR^n

Description

Implementation of the function

f ⁣:Rn(0,),xf(x)=1(2π)ndet(Σ)exp(((xμ)TΣ1(xμ))/2),f \colon R^n \to (0,\infty),\, \vec{x} \mapsto f(\vec{x}) = \frac{1}{\sqrt{(2\pi)^n\det(\Sigma)}}\exp(-((\vec{x}-\vec{\mu})^{T}\Sigma^{-1}(\vec{x}-\vec{\mu}))/2),

where n{1,2,3,}n \in \{1,2,3,\ldots\} is the dimension of the integration domain Rn=×i=1nRR^n = \times_{i=1}^n R. In this case the integral is know to be

Rnf(x)dx=1.\int_{R^n} f(\vec{x}) d\vec{x} = 1.

Details

The instance needs to be created with three parameters representing the dimension nn, the location vector μ\vec{\mu} and the variance-covariance matrix Σ\Sigma which needs to be symmetric positive definite.

Slots

dim

An integer that captures the dimension

mean

A vector of size dim with real entries.

sigma

A matrix of size dim x dim that is symmetric positive definite.

Author(s)

Klaus Herrmann

Examples

n <- as.integer(3)
f <- new("Rn_normalDensity",dim=n,mean=rep(0,n),sigma=diag(n))

[Package multIntTestFunc version 0.2.0 Index]