| Rn_floorNorm-class {multIntTestFunc} | R Documentation |
An S4 class to represent the function \frac{\Gamma(n/2+1)}{\pi^{n/2}(1+\lfloor \Vert \vec{x} \Vert_2^n \rfloor)^s} on R^n
Description
Implementation of the function
f \colon R^n \to [0,\infty),\, \vec{x} \mapsto f(\vec{x}) = \frac{\Gamma(n/2+1)}{\pi^{n/2}(1+\lfloor \Vert \vec{x} \Vert_2^n \rfloor)^s},
where n \in \{1,2,3,\ldots\} is the dimension of the integration domain R^n = \times_{i=1}^n R and s>1 is a parameter.
In this case the integral is know to be
\int_{R^n} f(\vec{x}) d\vec{x} = \zeta(s),
where \zeta(s) is the Riemann zeta function.
Details
The instance needs to be created with two parameters representing n and s.
Slots
dimAn integer that captures the dimension
sA numeric value bigger than 1 representing a power
Author(s)
Klaus Herrmann
Examples
n <- as.integer(3)
f <- new("Rn_floorNorm",dim=n,s=2)
[Package multIntTestFunc version 0.2.0 Index]