Pn_lognormalDensity-class {multIntTestFunc} | R Documentation |
An S4 class to represent the function \frac{1}{(\prod_{i=1}^{n}x_i) \sqrt{(2\pi)^n\det(\Sigma)}}\exp(-((\ln(\vec{x})-\vec{\mu})^{T}\Sigma^{-1}(\ln(\vec{x})-\vec{\mu}))/2)
on [0,\infty)^n
Description
Implementation of the function
f \colon R^n \to [0,\infty),\, \vec{x} \mapsto f(\vec{x}) = \frac{1}{(\prod_{i=1}^{n}x_i) \sqrt{(2\pi)^n\det(\Sigma)}}\exp(-((\ln(\vec{x})-\vec{\mu})^{T}\Sigma^{-1}(\ln(\vec{x})-\vec{\mu}))/2),
where n \in \{1,2,3,\ldots\}
is the dimension of the integration domain [0,\infty)^n = \times_{i=1}^n [0,\infty)
.
In this case the integral is know to be
\int_{R^n} f(\vec{x}) d\vec{x} = 1.
Details
The instance needs to be created with three parameters representing the dimension n
, the location vector \vec{\mu}
and the variance-covariance matrix \Sigma
which needs to be symmetric positive definite.
Slots
dim
An integer that captures the dimension
mean
A vector of size dim with real entries.
sigma
A matrix of size dim x dim that is symmetric positive definite.
Author(s)
Klaus Herrmann
Examples
n <- as.integer(3)
f <- new("Pn_lognormalDensity",dim=n,mean=rep(0,n),sigma=diag(n))