A C D E F G I L M N O P Q R S T U V W misc
latrend-package | latrend: A Framework for Clustering Longitudinal Data |
APPA | Average posterior probability of assignment (APPA) |
as.data.frame.lcMethod | Convert lcMethod arguments to a list of atomic types |
as.data.frame.lcMethods | Convert a list of lcMethod objects to a data.frame |
as.data.frame.lcModels | Generate a data.frame containing the argument values per method per row |
as.lcMethods | Convert a list of lcMethod objects to a lcMethods list |
as.lcModels | Convert a list of lcModels to a lcModels list |
as.list.lcMethod | Extract the method arguments as a list |
clusterNames | Get the cluster names |
clusterNames<- | Update the cluster names |
clusterProportions | Proportional size of each cluster |
clusterProportions-method | Proportional size of each cluster |
clusterSizes | Number of trajectories per cluster |
clusterTrajectories | Extract cluster trajectories |
clusterTrajectories-method | Extract cluster trajectories |
coef.lcModel | Extract lcModel coefficients |
compose | 'lcMethod' estimation step: compose an lcMethod object |
compose-method | 'lcMethod' estimation step: compose an lcMethod object |
compose-method | lcMetaMethod abstract class |
confusionMatrix | Compute the posterior confusion matrix |
converged | Check model convergence |
converged-method | Check model convergence |
createTestDataFold | Create the test fold data for validation |
createTestDataFolds | Create all k test folds from the training data |
createTrainDataFolds | Create the training data for each of the k models in k-fold cross validation evaluation |
dcastRepeatedMeasures | Convert a longitudinal data.frame to a matrix |
defineExternalMetric | Define an external metric for lcModels |
defineInternalMetric | Define an internal metric for lcModels |
deviance.lcModel | lcModel deviance |
df.residual.lcModel | Extract the residual degrees of freedom from a lcModel |
estimationTime | Estimation time |
estimationTime-method | Estimation time |
evaluate.lcMethod | Substitute the call arguments for their evaluated values |
externalMetric | Compute external model metric(s) |
externalMetric-method | Compute external model metric(s) |
fit | 'lcMethod' estimation step: logic for fitting the method to the processed data |
fit-method | 'lcMethod' estimation step: logic for fitting the method to the processed data |
fit-method | lcMetaMethod abstract class |
fitted.lcApproxModel | lcApproxModel class |
fitted.lcModel | Extract lcModel fitted values |
fittedTrajectories | Extract the fitted trajectories |
fittedTrajectories-method | Extract the fitted trajectories |
formula.lcMethod | Extract formula |
formula.lcModel | Extract the formula of a lcModel |
generateLongData | Generate longitudinal test data |
getArgumentDefaults | Default argument values for the given method specification |
getArgumentDefaults-method | Default argument values for the given method specification |
getArgumentExclusions | Arguments to be excluded from the specification |
getArgumentExclusions-method | Arguments to be excluded from the specification |
getCitation | Get citation info |
getCitation-method | Get citation info |
getExternalMetricDefinition | Get the external metric definition |
getExternalMetricNames | Get the names of the available external metrics |
getInternalMetricDefinition | Get the internal metric definition |
getInternalMetricNames | Get the names of the available internal metrics |
getLabel | Object label |
getLabel-method | Object label |
getLcMethod | Get the method specification |
getLcMethod-method | Get the method specification |
getLcMethod-method | lcMetaMethod abstract class |
getName | Object name |
getName-method | Object name |
getName-method | lcMetaMethod abstract class |
getShortName | Object name |
getShortName-method | Object name |
getShortName-method | lcMetaMethod abstract class |
ids | Get the trajectory ids on which the model was fitted |
idVariable | Extract the trajectory identifier variable |
idVariable-method | Extract the trajectory identifier variable |
idVariable-method | lcMetaMethod abstract class |
initialize-method | lcMethod initialization |
interface-metaMethods | lcMetaMethod abstract class |
internalMetric | Compute internal model metric(s) |
latrend | Cluster longitudinal data using the specified method |
latrend-approaches | High-level approaches to longitudinal clustering |
latrend-data | Longitudinal dataset representation |
latrend-estimation | Overview of *'lcMethod'* estimation functions |
latrend-generics | Generics used by latrend for different classes |
latrend-methods | Supported methods for longitudinal clustering |
latrend-metrics | Metrics |
latrend-parallel | Parallel computation using latrend |
latrend-procedure | Longitudinal cluster method ('lcMethod') estimation procedure |
latrendBatch | Cluster longitudinal data for a list of method specifications |
latrendBoot | Cluster longitudinal data using bootstrapping |
latrendCV | Cluster longitudinal data over k folds |
latrendData | Artificial longitudinal dataset comprising three classes |
latrendRep | Cluster longitudinal data repeatedly |
lcApproxModel | lcApproxModel class |
lcApproxModel-class | lcApproxModel class |
lcFitConverged | Method fit modifiers |
lcFitConverged-class | Method fit modifiers |
lcFitMethods | Method fit modifiers |
lcFitRep | Method fit modifiers |
lcFitRep-class | Method fit modifiers |
lcFitRepMax | Method fit modifiers |
lcFitRepMin | Method fit modifiers |
lcMetaMethod-class | lcMetaMethod abstract class |
lcMetaMethods | Method fit modifiers |
lcMethod | lcMethod class |
lcMethod-class | lcMethod class |
lcMethod-estimation | Longitudinal cluster method ('lcMethod') estimation procedure |
lcMethod-steps | Longitudinal cluster method ('lcMethod') estimation procedure |
lcMethodAkmedoids | Specify AKMedoids method |
lcMethodCrimCV | Specify a zero-inflated repeated-measures GBTM method |
lcMethodDtwclust | Specify time series clustering via dtwclust |
lcMethodFeature | Feature-based clustering |
lcMethodFlexmix | Method interface to flexmix() |
lcMethodFlexmixGBTM | Group-based trajectory modeling using flexmix |
lcMethodFunction | Specify a custom method based on a function |
lcMethodFunFEM | Specify a FunFEM method |
lcMethodGCKM | Two-step clustering through latent growth curve modeling and k-means |
lcMethodKML | Specify a longitudinal k-means (KML) method |
lcMethodLcmmGBTM | Specify GBTM method |
lcMethodLcmmGMM | Specify GMM method using lcmm |
lcMethodLMKM | Two-step clustering through linear regression modeling and k-means |
lcMethodMclustLLPA | Longitudinal latent profile analysis |
lcMethodMixAK_GLMM | Specify a GLMM iwht a normal mixture in the random effects |
lcMethodMixtoolsGMM | Specify mixed mixture regression model using mixtools |
lcMethodMixtoolsNPRM | Specify non-parametric estimation for independent repeated measures |
lcMethodMixTVEM | Specify a MixTVEM |
lcMethodRandom | Specify a random-partitioning method |
lcMethods | Generate a list of lcMethod objects |
lcMethodStratify | Specify a stratification method |
lcModel | Longitudinal cluster result (*'lcModel'*) |
lcModel-class | 'lcModel' class |
lcModelPartition | Create a lcModel with pre-defined partitioning |
lcModels | Construct a list of 'lcModel' objects |
lcModels-class | 'lcModels': a list of 'lcModel' objects |
lcModelWeightedPartition | Create a lcModel with pre-defined weighted partitioning |
length-method | lcMethod argument names |
logLik.lcModel | Extract the log-likelihood of a lcModel |
max.lcModels | Select the lcModel with the highest metric value |
meltRepeatedMeasures | Convert a multiple time series matrix to a data.frame |
metric | Compute internal model metric(s) |
metric-method | Compute internal model metric(s) |
min.lcModels | Select the lcModel with the lowest metric value |
model.data.lcModel | Extract the model data that was used for fitting |
model.frame.lcModel | Extract model training data |
names-method | lcMethod argument names |
nClusters | Number of clusters |
nClusters-method | Number of clusters |
nIds | Number of trajectories |
nobs.lcModel | Number of observations used for the lcModel fit |
OCC | Odds of correct classification (OCC) |
PAP.adh | Weekly Mean PAP Therapy Usage of OSA Patients in the First 3 Months |
PAP.adh1y | Biweekly Mean PAP Therapy Adherence of OSA Patients over 1 Year |
plot-lcModel-method | Plot a lcModel |
plot-lcModels-method | Grid plot for a list of models |
plot-method | Plot a lcModel |
plot-method | Grid plot for a list of models |
plotClusterTrajectories | Plot cluster trajectories |
plotClusterTrajectories-method | Plot cluster trajectories |
plotFittedTrajectories | Plot the fitted trajectories |
plotFittedTrajectories-method | Plot the fitted trajectories |
plotMetric | Plot one or more internal metrics for all lcModels |
plotTrajectories | Plot the data trajectories |
plotTrajectories-method | Plot the data trajectories |
postFit | 'lcMethod' estimation step: logic for post-processing the fitted lcModel |
postFit-method | lcMetaMethod abstract class |
postFit-method | 'lcMethod' estimation step: logic for post-processing the fitted lcModel |
postprob | Posterior probability per fitted trajectory |
postprob-method | Posterior probability per fitted trajectory |
postprobFromAssignments | Create a posterior probability matrix from a vector of cluster assignments. |
predict.lcModel | lcModel predictions |
predictAssignments | Predict the cluster assignments for new trajectories |
predictAssignments-method | Predict the cluster assignments for new trajectories |
predictForCluster | Predict trajectories conditional on cluster membership |
predictForCluster-method | lcApproxModel class |
predictForCluster-method | Predict trajectories conditional on cluster membership |
predictPostprob | Posterior probability for new data |
predictPostprob-method | Posterior probability for new data |
preFit | 'lcMethod' estimation step: method preparation logic |
preFit-method | lcMetaMethod abstract class |
preFit-method | 'lcMethod' estimation step: method preparation logic |
prepareData | 'lcMethod' estimation step: logic for preparing the training data |
prepareData-method | lcMetaMethod abstract class |
prepareData-method | 'lcMethod' estimation step: logic for preparing the training data |
print.lcMethod | Print the arguments of an lcMethod object |
print.lcModels | Print lcModels list concisely |
qqPlot | Quantile-quantile plot |
residuals.lcModel | Extract lcModel residuals |
responseVariable | Extract response variable |
responseVariable-method | lcMetaMethod abstract class |
responseVariable-method | Extract response variable |
sigma.lcModel | Extract residual standard deviation from a lcModel |
strip | Reduce the memory footprint of an object for serialization |
strip-method | Reduce the memory footprint of an object for serialization |
subset.lcModels | Subsetting a lcModels list based on method arguments |
summary.lcModel | Summarize a lcModel |
test.latrend | Test the implementation of an lcMethod and associated lcModel subclasses |
time.lcModel | Sampling times of a lcModel |
timeariable-method | Extract the time variable |
timeVariable | Extract the time variable |
timeVariable-method | lcMetaMethod abstract class |
timeVariable-method | Extract the time variable |
trajectories | Get the trajectories |
trajectories-method | Get the trajectories |
trajectoryAssignments | Get the cluster membership of each trajectory |
trajectoryAssignments-method | Get the cluster membership of each trajectory |
transformFitted | Helper function for custom lcModel classes implementing fitted.lcModel() |
transformFitted-method | Helper function for custom lcModel classes implementing fitted.lcModel() |
transformPredict | Helper function for custom lcModel classes implementing predict.lcModel() |
transformPredict-method | Helper function for custom lcModel classes implementing predict.lcModel() |
tsframe | Convert a multiple time series matrix to a data.frame |
tsmatrix | Convert a longitudinal data.frame to a matrix |
update.lcMetaMethod | lcMetaMethod abstract class |
update.lcMethod | Update a method specification |
update.lcModel | Update a lcModel |
validate | 'lcMethod' estimation step: method argument validation logic |
validate-method | lcMetaMethod abstract class |
validate-method | 'lcMethod' estimation step: method argument validation logic |
which.weight | Sample an index of a vector weighted by the elements |
$-method | Retrieve and evaluate a lcMethod argument by name |
[[-method | Retrieve and evaluate a lcMethod argument by name |