A Framework for Clustering Longitudinal Data


[Up] [Top]

Documentation for package ‘latrend’ version 1.6.1

Help Pages

A C D E F G I L M N O P Q R S T U V W misc

latrend-package latrend: A Framework for Clustering Longitudinal Data

-- A --

APPA Average posterior probability of assignment (APPA)
as.data.frame.lcMethod Convert lcMethod arguments to a list of atomic types
as.data.frame.lcMethods Convert a list of lcMethod objects to a data.frame
as.data.frame.lcModels Generate a data.frame containing the argument values per method per row
as.lcMethods Convert a list of lcMethod objects to a lcMethods list
as.lcModels Convert a list of lcModels to a lcModels list
as.list.lcMethod Extract the method arguments as a list

-- C --

clusterNames Get the cluster names
clusterNames<- Update the cluster names
clusterProportions Proportional size of each cluster
clusterProportions-method Proportional size of each cluster
clusterSizes Number of trajectories per cluster
clusterTrajectories Extract cluster trajectories
clusterTrajectories-method Extract cluster trajectories
coef.lcModel Extract lcModel coefficients
compose 'lcMethod' estimation step: compose an lcMethod object
compose-method 'lcMethod' estimation step: compose an lcMethod object
compose-method lcMetaMethod abstract class
confusionMatrix Compute the posterior confusion matrix
converged Check model convergence
converged-method Check model convergence
createTestDataFold Create the test fold data for validation
createTestDataFolds Create all k test folds from the training data
createTrainDataFolds Create the training data for each of the k models in k-fold cross validation evaluation

-- D --

dcastRepeatedMeasures Convert a longitudinal data.frame to a matrix
defineExternalMetric Define an external metric for lcModels
defineInternalMetric Define an internal metric for lcModels
deviance.lcModel lcModel deviance
df.residual.lcModel Extract the residual degrees of freedom from a lcModel

-- E --

estimationTime Estimation time
estimationTime-method Estimation time
evaluate.lcMethod Substitute the call arguments for their evaluated values
externalMetric Compute external model metric(s)
externalMetric-method Compute external model metric(s)

-- F --

fit 'lcMethod' estimation step: logic for fitting the method to the processed data
fit-method 'lcMethod' estimation step: logic for fitting the method to the processed data
fit-method lcMetaMethod abstract class
fitted.lcApproxModel lcApproxModel class
fitted.lcModel Extract lcModel fitted values
fittedTrajectories Extract the fitted trajectories
fittedTrajectories-method Extract the fitted trajectories
formula.lcMethod Extract formula
formula.lcModel Extract the formula of a lcModel

-- G --

generateLongData Generate longitudinal test data
getArgumentDefaults Default argument values for the given method specification
getArgumentDefaults-method Default argument values for the given method specification
getArgumentExclusions Arguments to be excluded from the specification
getArgumentExclusions-method Arguments to be excluded from the specification
getCitation Get citation info
getCitation-method Get citation info
getExternalMetricDefinition Get the external metric definition
getExternalMetricNames Get the names of the available external metrics
getInternalMetricDefinition Get the internal metric definition
getInternalMetricNames Get the names of the available internal metrics
getLabel Object label
getLabel-method Object label
getLcMethod Get the method specification
getLcMethod-method Get the method specification
getLcMethod-method lcMetaMethod abstract class
getName Object name
getName-method Object name
getName-method lcMetaMethod abstract class
getShortName Object name
getShortName-method Object name
getShortName-method lcMetaMethod abstract class

-- I --

ids Get the trajectory ids on which the model was fitted
idVariable Extract the trajectory identifier variable
idVariable-method Extract the trajectory identifier variable
idVariable-method lcMetaMethod abstract class
initialize-method lcMethod initialization
interface-metaMethods lcMetaMethod abstract class
internalMetric Compute internal model metric(s)

-- L --

latrend Cluster longitudinal data using the specified method
latrend-approaches High-level approaches to longitudinal clustering
latrend-data Longitudinal dataset representation
latrend-estimation Overview of *'lcMethod'* estimation functions
latrend-generics Generics used by latrend for different classes
latrend-methods Supported methods for longitudinal clustering
latrend-metrics Metrics
latrend-parallel Parallel computation using latrend
latrend-procedure Longitudinal cluster method ('lcMethod') estimation procedure
latrendBatch Cluster longitudinal data for a list of method specifications
latrendBoot Cluster longitudinal data using bootstrapping
latrendCV Cluster longitudinal data over k folds
latrendData Artificial longitudinal dataset comprising three classes
latrendRep Cluster longitudinal data repeatedly
lcApproxModel lcApproxModel class
lcApproxModel-class lcApproxModel class
lcFitConverged Method fit modifiers
lcFitConverged-class Method fit modifiers
lcFitMethods Method fit modifiers
lcFitRep Method fit modifiers
lcFitRep-class Method fit modifiers
lcFitRepMax Method fit modifiers
lcFitRepMin Method fit modifiers
lcMetaMethod-class lcMetaMethod abstract class
lcMetaMethods Method fit modifiers
lcMethod lcMethod class
lcMethod-class lcMethod class
lcMethod-estimation Longitudinal cluster method ('lcMethod') estimation procedure
lcMethod-steps Longitudinal cluster method ('lcMethod') estimation procedure
lcMethodAkmedoids Specify AKMedoids method
lcMethodCrimCV Specify a zero-inflated repeated-measures GBTM method
lcMethodDtwclust Specify time series clustering via dtwclust
lcMethodFeature Feature-based clustering
lcMethodFlexmix Method interface to flexmix()
lcMethodFlexmixGBTM Group-based trajectory modeling using flexmix
lcMethodFunction Specify a custom method based on a function
lcMethodFunFEM Specify a FunFEM method
lcMethodGCKM Two-step clustering through latent growth curve modeling and k-means
lcMethodKML Specify a longitudinal k-means (KML) method
lcMethodLcmmGBTM Specify GBTM method
lcMethodLcmmGMM Specify GMM method using lcmm
lcMethodLMKM Two-step clustering through linear regression modeling and k-means
lcMethodMclustLLPA Longitudinal latent profile analysis
lcMethodMixAK_GLMM Specify a GLMM iwht a normal mixture in the random effects
lcMethodMixtoolsGMM Specify mixed mixture regression model using mixtools
lcMethodMixtoolsNPRM Specify non-parametric estimation for independent repeated measures
lcMethodMixTVEM Specify a MixTVEM
lcMethodRandom Specify a random-partitioning method
lcMethods Generate a list of lcMethod objects
lcMethodStratify Specify a stratification method
lcModel Longitudinal cluster result (*'lcModel'*)
lcModel-class 'lcModel' class
lcModelPartition Create a lcModel with pre-defined partitioning
lcModels Construct a list of 'lcModel' objects
lcModels-class 'lcModels': a list of 'lcModel' objects
lcModelWeightedPartition Create a lcModel with pre-defined weighted partitioning
length-method lcMethod argument names
logLik.lcModel Extract the log-likelihood of a lcModel

-- M --

max.lcModels Select the lcModel with the highest metric value
meltRepeatedMeasures Convert a multiple time series matrix to a data.frame
metric Compute internal model metric(s)
metric-method Compute internal model metric(s)
min.lcModels Select the lcModel with the lowest metric value
model.data.lcModel Extract the model data that was used for fitting
model.frame.lcModel Extract model training data

-- N --

names-method lcMethod argument names
nClusters Number of clusters
nClusters-method Number of clusters
nIds Number of trajectories
nobs.lcModel Number of observations used for the lcModel fit

-- O --

OCC Odds of correct classification (OCC)

-- P --

PAP.adh Weekly Mean PAP Therapy Usage of OSA Patients in the First 3 Months
PAP.adh1y Biweekly Mean PAP Therapy Adherence of OSA Patients over 1 Year
plot-lcModel-method Plot a lcModel
plot-lcModels-method Grid plot for a list of models
plot-method Plot a lcModel
plot-method Grid plot for a list of models
plotClusterTrajectories Plot cluster trajectories
plotClusterTrajectories-method Plot cluster trajectories
plotFittedTrajectories Plot the fitted trajectories
plotFittedTrajectories-method Plot the fitted trajectories
plotMetric Plot one or more internal metrics for all lcModels
plotTrajectories Plot the data trajectories
plotTrajectories-method Plot the data trajectories
postFit 'lcMethod' estimation step: logic for post-processing the fitted lcModel
postFit-method lcMetaMethod abstract class
postFit-method 'lcMethod' estimation step: logic for post-processing the fitted lcModel
postprob Posterior probability per fitted trajectory
postprob-method Posterior probability per fitted trajectory
postprobFromAssignments Create a posterior probability matrix from a vector of cluster assignments.
predict.lcModel lcModel predictions
predictAssignments Predict the cluster assignments for new trajectories
predictAssignments-method Predict the cluster assignments for new trajectories
predictForCluster Predict trajectories conditional on cluster membership
predictForCluster-method lcApproxModel class
predictForCluster-method Predict trajectories conditional on cluster membership
predictPostprob Posterior probability for new data
predictPostprob-method Posterior probability for new data
preFit 'lcMethod' estimation step: method preparation logic
preFit-method lcMetaMethod abstract class
preFit-method 'lcMethod' estimation step: method preparation logic
prepareData 'lcMethod' estimation step: logic for preparing the training data
prepareData-method lcMetaMethod abstract class
prepareData-method 'lcMethod' estimation step: logic for preparing the training data
print.lcMethod Print the arguments of an lcMethod object
print.lcModels Print lcModels list concisely

-- Q --

qqPlot Quantile-quantile plot

-- R --

residuals.lcModel Extract lcModel residuals
responseVariable Extract response variable
responseVariable-method lcMetaMethod abstract class
responseVariable-method Extract response variable

-- S --

sigma.lcModel Extract residual standard deviation from a lcModel
strip Reduce the memory footprint of an object for serialization
strip-method Reduce the memory footprint of an object for serialization
subset.lcModels Subsetting a lcModels list based on method arguments
summary.lcModel Summarize a lcModel

-- T --

test.latrend Test the implementation of an lcMethod and associated lcModel subclasses
time.lcModel Sampling times of a lcModel
timeariable-method Extract the time variable
timeVariable Extract the time variable
timeVariable-method lcMetaMethod abstract class
timeVariable-method Extract the time variable
trajectories Get the trajectories
trajectories-method Get the trajectories
trajectoryAssignments Get the cluster membership of each trajectory
trajectoryAssignments-method Get the cluster membership of each trajectory
transformFitted Helper function for custom lcModel classes implementing fitted.lcModel()
transformFitted-method Helper function for custom lcModel classes implementing fitted.lcModel()
transformPredict Helper function for custom lcModel classes implementing predict.lcModel()
transformPredict-method Helper function for custom lcModel classes implementing predict.lcModel()
tsframe Convert a multiple time series matrix to a data.frame
tsmatrix Convert a longitudinal data.frame to a matrix

-- U --

update.lcMetaMethod lcMetaMethod abstract class
update.lcMethod Update a method specification
update.lcModel Update a lcModel

-- V --

validate 'lcMethod' estimation step: method argument validation logic
validate-method lcMetaMethod abstract class
validate-method 'lcMethod' estimation step: method argument validation logic

-- W --

which.weight Sample an index of a vector weighted by the elements

-- misc --

$-method Retrieve and evaluate a lcMethod argument by name
[[-method Retrieve and evaluate a lcMethod argument by name