| predictForCluster {latrend} | R Documentation |
Predict trajectories conditional on cluster membership
Description
Predicts the expected trajectory observations at the given time under the assumption that the trajectory belongs to the specified cluster.
For lcModel objects, the same result can be obtained by calling predict() with the newdata data.frame having a "Cluster" assignment column.
The main purpose of this function is to make it easier to implement the prediction computations for custom lcModel classes.
Usage
predictForCluster(object, newdata = NULL, cluster, ...)
## S4 method for signature 'lcModel'
predictForCluster(object, newdata = NULL, cluster, ..., what = "mu")
Arguments
object |
The model. |
newdata |
A |
cluster |
The cluster name (as |
... |
Arguments passed on to
|
what |
The distributional parameter to predict. By default, the mean response 'mu' is predicted. The cluster membership predictions can be obtained by specifying |
Details
The default predictForCluster(lcModel) method makes use of predict.lcModel(), and vice versa. For this to work, any extending lcModel classes, e.g., lcModelExample, should implement either predictForCluster(lcModelExample) or predict.lcModelExample(). When implementing new models, it is advisable to implement predictForCluster as the cluster-specific computation generally results in shorter and simpler code.
Value
A vector with the predictions per newdata observation, or a data.frame with the predictions and newdata alongside.
Implementation
Classes extending lcModel should override this method, unless predict.lcModel() is preferred.
setMethod("predictForCluster", "lcModelExt",
function(object, newdata = NULL, cluster, ..., what = "mu") {
# return model predictions for the given data under the
# assumption of the data belonging to the given cluster
})
See Also
Other lcModel functions:
clusterNames(),
clusterProportions(),
clusterSizes(),
clusterTrajectories(),
coef.lcModel(),
converged(),
deviance.lcModel(),
df.residual.lcModel(),
estimationTime(),
externalMetric(),
fitted.lcModel(),
fittedTrajectories(),
getCall.lcModel(),
getLcMethod(),
ids(),
lcModel-class,
metric(),
model.frame.lcModel(),
nClusters(),
nIds(),
nobs.lcModel(),
plot-lcModel-method,
plotClusterTrajectories(),
plotFittedTrajectories(),
postprob(),
predict.lcModel(),
predictAssignments(),
predictPostprob(),
qqPlot(),
residuals.lcModel(),
sigma.lcModel(),
strip(),
time.lcModel(),
trajectoryAssignments()
Examples
data(latrendData)
method <- lcMethodLMKM(Y ~ Time, id = "Id", time = "Time")
model <- latrend(method, latrendData)
predictForCluster(
model,
newdata = data.frame(Time = c(0, 1)),
cluster = "B"
)
# all fitted values under cluster B
predictForCluster(model, cluster = "B")