| lcMethodGCKM {latrend} | R Documentation |
Two-step clustering through latent growth curve modeling and k-means
Description
Two-step clustering through latent growth curve modeling and k-means.
Usage
lcMethodGCKM(
formula,
time = getOption("latrend.time"),
id = getOption("latrend.id"),
nClusters = 2,
center = meanNA,
standardize = scale,
...
)
Arguments
formula |
Formula, including a random effects component for the trajectory. See lme4::lmer formula syntax. |
time |
The name of the time variable.. |
id |
The name of the trajectory identifier variable. |
nClusters |
The number of clusters. |
center |
A |
standardize |
A |
... |
Arguments passed to lme4::lmer. The following external arguments are ignored: data, centers, trace. |
See Also
Other lcMethod implementations:
getArgumentDefaults(),
getArgumentExclusions(),
lcMethod-class,
lcMethodAkmedoids,
lcMethodCrimCV,
lcMethodDtwclust,
lcMethodFeature,
lcMethodFunFEM,
lcMethodFunction,
lcMethodKML,
lcMethodLMKM,
lcMethodLcmmGBTM,
lcMethodLcmmGMM,
lcMethodMclustLLPA,
lcMethodMixAK_GLMM,
lcMethodMixtoolsGMM,
lcMethodMixtoolsNPRM,
lcMethodRandom,
lcMethodStratify
Examples
data(latrendData)
if (require("lme4")) {
method <- lcMethodGCKM(Y ~ (Time | Id), id = "Id", time = "Time", nClusters = 3)
model <- latrend(method, latrendData)
}