trajectoryAssignments {latrend} | R Documentation |
Get the cluster membership of each trajectory
Description
Get the cluster membership of each trajectory associated with the given model.
For lcModel
: Classify the fitted trajectories based on the posterior probabilities computed by postprob()
, according to a given classification strategy.
By default, trajectories are assigned based on the highest posterior probability using which.max()
.
In cases where identical probabilities are expected between clusters, it is preferable to use which.is.max instead, as this function breaks ties at random.
Another strategy to consider is the function which.weight()
, which enables weighted sampling of cluster assignments based on the trajectory-specific probabilities.
Usage
trajectoryAssignments(object, ...)
## S4 method for signature 'matrix'
trajectoryAssignments(
object,
strategy = which.max,
clusterNames = colnames(object),
...
)
## S4 method for signature 'lcModel'
trajectoryAssignments(object, strategy = which.max, ...)
Arguments
object |
The model. |
... |
Any additional arguments passed to the strategy function. |
strategy |
A function returning the cluster index based on the given vector of membership probabilities. By default, ids are assigned to the cluster with the highest probability. |
clusterNames |
Optional |
Details
In case object
is a matrix
: the posterior probability matrix
,
with the k
th column containing the observation- or trajectory-specific probability for cluster k
.
Value
A factor vector
indicating the cluster membership for each trajectory.
See Also
postprob clusterSizes predictAssignments
Other lcModel functions:
clusterNames()
,
clusterProportions()
,
clusterSizes()
,
clusterTrajectories()
,
coef.lcModel()
,
converged()
,
deviance.lcModel()
,
df.residual.lcModel()
,
estimationTime()
,
externalMetric()
,
fitted.lcModel()
,
fittedTrajectories()
,
getCall.lcModel()
,
getLcMethod()
,
ids()
,
lcModel-class
,
metric()
,
model.frame.lcModel()
,
nClusters()
,
nIds()
,
nobs.lcModel()
,
plot-lcModel-method
,
plotClusterTrajectories()
,
plotFittedTrajectories()
,
postprob()
,
predict.lcModel()
,
predictAssignments()
,
predictForCluster()
,
predictPostprob()
,
qqPlot()
,
residuals.lcModel()
,
sigma.lcModel()
,
strip()
,
time.lcModel()
Examples
data(latrendData)
method <- lcMethodLMKM(Y ~ Time, id = "Id", time = "Time")
model <- latrend(method, latrendData)
trajectoryAssignments(model)
# assign trajectories at random using weighted sampling
trajectoryAssignments(model, strategy = which.weight)