predictPostprob {latrend} | R Documentation |
Posterior probability for new data
Description
Returns the observation-specific posterior probabilities for the given data.
For lcModel
: The default implementation returns a uniform probability matrix.
Usage
predictPostprob(object, newdata = NULL, ...)
## S4 method for signature 'lcModel'
predictPostprob(object, newdata = NULL, ...)
Arguments
object |
The model. |
newdata |
Optional |
... |
Additional arguments passed to postprob. |
Value
A N-by-K matrix
indicating the posterior probability per trajectory per measurement on each row, for each cluster (the columns).
Here, N = nrow(newdata)
and K = nClusters(object)
.
Implementation
Classes extending lcModel
should override this method to enable posterior probability predictions for new data.
setMethod("predictPostprob", "lcModelExt", function(object, newdata = NULL, ...) { # return observation-specific posterior probability matrix })
See Also
Other lcModel functions:
clusterNames()
,
clusterProportions()
,
clusterSizes()
,
clusterTrajectories()
,
coef.lcModel()
,
converged()
,
deviance.lcModel()
,
df.residual.lcModel()
,
estimationTime()
,
externalMetric()
,
fitted.lcModel()
,
fittedTrajectories()
,
getCall.lcModel()
,
getLcMethod()
,
ids()
,
lcModel-class
,
metric()
,
model.frame.lcModel()
,
nClusters()
,
nIds()
,
nobs.lcModel()
,
plot-lcModel-method
,
plotClusterTrajectories()
,
plotFittedTrajectories()
,
postprob()
,
predict.lcModel()
,
predictAssignments()
,
predictForCluster()
,
qqPlot()
,
residuals.lcModel()
,
sigma.lcModel()
,
strip()
,
time.lcModel()
,
trajectoryAssignments()