lcMethodLcmmGBTM {latrend} | R Documentation |
Specify GBTM method
Description
Group-based trajectory modeling through fixed-effects modeling.
Usage
lcMethodLcmmGBTM(
fixed,
mixture = ~1,
classmb = ~1,
time = getOption("latrend.time"),
id = getOption("latrend.id"),
nClusters = 2,
init = "default",
...
)
Arguments
fixed |
The fixed effects formula. |
mixture |
The mixture-specific effects formula. See lcmm::hlme for details. |
classmb |
The cluster membership formula for the multinomial logistic model. See lcmm::hlme for details. |
time |
The name of the time variable. |
id |
The name of the trajectory identifier variable. This replaces the |
nClusters |
The number of clusters to fit. This replaces the |
init |
Alternative for the
The argument is ignored if the |
... |
Arguments passed to lcmm::hlme. The following arguments are ignored: data, fixed, random, mixture, subject, classmb, returndata, ng, verbose, subset. |
References
Proust-Lima C, Philipps V, Liquet B (2017). “Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm.” Journal of Statistical Software, 78(2), 1–56. doi:10.18637/jss.v078.i02.
Proust-Lima C, Philipps V, Diakite A, Liquet B (2019). lcmm: Extended Mixed Models Using Latent Classes and Latent Processes. R package version: 1.8.1, https://cran.r-project.org/package=lcmm.
See Also
Other lcMethod implementations:
getArgumentDefaults()
,
getArgumentExclusions()
,
lcMethod-class
,
lcMethodAkmedoids
,
lcMethodCrimCV
,
lcMethodDtwclust
,
lcMethodFeature
,
lcMethodFunFEM
,
lcMethodFunction
,
lcMethodGCKM
,
lcMethodKML
,
lcMethodLMKM
,
lcMethodLcmmGMM
,
lcMethodMclustLLPA
,
lcMethodMixAK_GLMM
,
lcMethodMixtoolsGMM
,
lcMethodMixtoolsNPRM
,
lcMethodRandom
,
lcMethodStratify
Examples
data(latrendData)
if (rlang::is_installed("lcmm")) {
method <- lcMethodLcmmGBTM(
fixed = Y ~ Time,
mixture = ~ 1,
id = "Id",
time = "Time",
nClusters = 3
)
gbtm <- latrend(method, data = latrendData)
summary(gbtm)
method <- lcMethodLcmmGBTM(
fixed = Y ~ Time,
mixture = ~ Time,
id = "Id",
time = "Time",
nClusters = 3
)
}