lcMethodCrimCV {latrend} | R Documentation |
Specify a zero-inflated repeated-measures GBTM method
Description
Specify a zero-inflated repeated-measures GBTM method
Usage
lcMethodCrimCV(
response,
time = getOption("latrend.time"),
id = getOption("latrend.id"),
nClusters = 2,
...
)
Arguments
response |
The name of the response variable. |
time |
The name of the time variable. |
id |
The name of the trajectory identifier variable. |
nClusters |
The number of clusters to estimate. |
... |
Arguments passed to crimCV::crimCV. The following external arguments are ignored: Dat, ng. |
References
Nielsen JD (2018). crimCV: Group-Based Modelling of Longitudinal Data. R package version 0.9.6, https://CRAN.R-project.org/package=crimCV.
See Also
Other lcMethod implementations:
getArgumentDefaults()
,
getArgumentExclusions()
,
lcMethod-class
,
lcMethodAkmedoids
,
lcMethodDtwclust
,
lcMethodFeature
,
lcMethodFunFEM
,
lcMethodFunction
,
lcMethodGCKM
,
lcMethodKML
,
lcMethodLMKM
,
lcMethodLcmmGBTM
,
lcMethodLcmmGMM
,
lcMethodMclustLLPA
,
lcMethodMixAK_GLMM
,
lcMethodMixtoolsGMM
,
lcMethodMixtoolsNPRM
,
lcMethodRandom
,
lcMethodStratify
Examples
# This example is not tested because crimCV sometimes fails
# to converge and throws the error "object 'Frtr' not found"
## Not run:
data(latrendData)
if (require("crimCV")) {
method <- lcMethodCrimCV("Y", id = "Id", time = "Time", nClusters = 3, dpolyp = 1, init = 2)
model <- latrend(method, data = subset(latrendData, Time > .5))
if (require("ggplot2")) {
plot(model)
}
data(TO1adj)
method <- lcMethodCrimCV(response = "Offenses", time = "Offense", id = "Subject",
nClusters = 2, dpolyp = 1, init = 2)
model <- latrend(method, data = TO1adj[1:100, ])
}
## End(Not run)