Dimension Reduction, Regression and Discrimination for Chemometrics


[Up] [Top]

Documentation for package ‘rchemo’ version 0.1-2

Help Pages

A B C D E F G H I K L M O P Q R S T V W X

-- A --

aggmean Centers of classes
aicplsr AIC and Cp for Univariate PLSR Models
asdgap asdgap

-- B --

bias Residuals and prediction error rates
blockscal Block autoscaling

-- C --

cassav cassav
cglsr CG Least Squares Models
checkdupl Duplicated rows in datasets
checkna Find and count NA values in a dataset
coef.Cglsr CG Least Squares Models
coef.Dkpls Direct KPLSR Models
coef.Dkrr Direct KRR Models
coef.Kplsr KPLSR Models
coef.Krr KRR (LS-SVMR)
coef.Lmr Linear regression models
coef.Mbplsr multi-block PLSR algorithms
coef.Plsr PLSR algorithms
coef.Rr Linear Ridge Regression
cor2 Residuals and prediction error rates
covsel CovSel

-- D --

dderiv Derivation by finite difference
detrend Polynomial de-trend transformation
dfplsr_cg Degrees of freedom of Univariate PLSR Models
dfplsr_cov Degrees of freedom of Univariate PLSR Models
dfplsr_div Degrees of freedom of Univariate PLSR Models
dkplsr Direct KPLSR Models
dkrr Direct KRR Models
dmnorm Multivariate normal probability density
dtagg Summary statistics of data subsets
dummy Table of dummy variables

-- E --

eposvd External parameter orthogonalization (EPO)
err Residuals and prediction error rates
euclsq Matrix of distances
euclsq_mu Matrix of distances

-- F --

fda Factorial discriminant analysis
fdasvd Factorial discriminant analysis
forages forages

-- G --

getknn KNN selection
gridcv Cross-validation
gridcvlb Cross-validation
gridcvlv Cross-validation
gridscore Tuning of predictive models on a validation dataset
gridscorelb Tuning of predictive models on a validation dataset
gridscorelv Tuning of predictive models on a validation dataset

-- H --

hconcat Block autoscaling
headm Display of the first part of a data set

-- I --

interpl Resampling of spectra by interpolation methods

-- K --

knnda KNN-DA
knnr KNN-R
kpca KPCA
kplsr KPLSR Models
kplsrda KPLSR-DA models
kpol Kernel functions
krbf Kernel functions
krr KRR (LS-SVMR)
krrda KRR-DA models
ktanh Kernel functions

-- L --

lda LDA and QDA
lmr Linear regression models
lmrda LMR-DA models
locw Locally weighted models
locwlv Locally weighted models
lodis Orthogonal distances from a PCA or PLS score space
lwplslda KNN-LWPLS-DA Models
lwplslda_agg Aggregation of KNN-LWPLSDA models with different numbers of LVs
lwplsqda KNN-LWPLS-DA Models
lwplsqda_agg Aggregation of KNN-LWPLSDA models with different numbers of LVs
lwplsr KNN-LWPLSR
lwplsrda KNN-LWPLS-DA Models
lwplsrda_agg Aggregation of KNN-LWPLSDA models with different numbers of LVs
lwplsr_agg Aggregation of KNN-LWPLSR models with different numbers of LVs

-- M --

mahsq Matrix of distances
mahsq_mu Matrix of distances
matB Between and within covariance matrices
matW Between and within covariance matrices
mavg Smoothing by moving average
mblocks Block autoscaling
mbplslda multi-block PLSDA models
mbplsqda multi-block PLSDA models
mbplsr multi-block PLSR algorithms
mbplsrda multi-block PLSDA models
mpars Tuning of predictive models on a validation dataset
mse Residuals and prediction error rates
msep Residuals and prediction error rates

-- O --

octane octane
odis Orthogonal distances from a PCA or PLS score space
orthog Orthogonalization of a matrix to another matrix
ozone ozone

-- P --

pcaeigen PCA algorithms
pcaeigenk PCA algorithms
pcanipals PCA algorithms
pcanipalsna PCA algorithms
pcasph PCA algorithms
pcasvd PCA algorithms
pinv Moore-Penrose pseudo-inverse of a matrix
plotjit Jittered plot
plotscore Plotting errors rates
plotsp Plotting spectra
plotsp1 Plotting spectra
plotxna Plotting Missing Data in a Matrix
plotxy 2-d scatter plot
plskern PLSR algorithms
plslda PLSDA models
plslda_agg PLSDA with aggregation of latent variables
plsnipals PLSR algorithms
plsqda PLSDA models
plsqda_agg PLSDA with aggregation of latent variables
plsrannar PLSR algorithms
plsrda PLSDA models
plsrda_agg PLSDA with aggregation of latent variables
plsr_agg PLSR with aggregation of latent variables
predict.Cglsr CG Least Squares Models
predict.Dkplsr Direct KPLSR Models
predict.Dkrr Direct KRR Models
predict.Dmnorm Multivariate normal probability density
predict.Knnda KNN-DA
predict.Knnr KNN-R
predict.Kplsr KPLSR Models
predict.Kplsrda KPLSR-DA models
predict.Krr KRR (LS-SVMR)
predict.Krrda KRR-DA models
predict.Lda LDA and QDA
predict.Lmr Linear regression models
predict.Lmrda LMR-DA models
predict.Lwplsprobda KNN-LWPLS-DA Models
predict.Lwplsprobda_agg Aggregation of KNN-LWPLSDA models with different numbers of LVs
predict.Lwplsr KNN-LWPLSR
predict.Lwplsrda KNN-LWPLS-DA Models
predict.Lwplsrda_agg Aggregation of KNN-LWPLSDA models with different numbers of LVs
predict.Lwplsr_agg Aggregation of KNN-LWPLSR models with different numbers of LVs
predict.Mbplsprobda multi-block PLSDA models
predict.Mbplsr multi-block PLSR algorithms
predict.Mbplsrda multi-block PLSDA models
predict.Plsda_agg PLSDA with aggregation of latent variables
predict.Plsprobda PLSDA models
predict.Plsr PLSR algorithms
predict.Plsrda PLSDA models
predict.Plsr_agg PLSR with aggregation of latent variables
predict.Qda LDA and QDA
predict.Rr Linear Ridge Regression
predict.Rrda RR-DA models
predict.Soplsprobda Block dimension reduction by SO-PLS-DA
predict.Soplsr Block dimension reduction by SO-PLS
predict.Soplsrda Block dimension reduction by SO-PLS-DA
predict.Svm SVM Regression and Discrimination

-- Q --

qda LDA and QDA

-- R --

r2 Residuals and prediction error rates
residcla Residuals and prediction error rates
residreg Residuals and prediction error rates
rmgap Removing vertical gaps in spectra
rmsep Residuals and prediction error rates
rpd Residuals and prediction error rates
rpdr Residuals and prediction error rates
rr Linear Ridge Regression
rrda RR-DA models

-- S --

sampcla Within-class sampling
sampdp Duplex sampling
sampks Kennard-Stone sampling
savgol Savitzky-Golay smoothing
scordis Score distances (SD) in a PCA or PLS score space
segmkf Segments for cross-validation
segmts Segments for cross-validation
selwold Heuristic selection of the dimension of a latent variable model with the Wold's criterion
sep Residuals and prediction error rates
snv Standard normal variate transformation (SNV)
soplslda Block dimension reduction by SO-PLS-DA
soplsldacv Block dimension reduction by SO-PLS-DA
soplsqda Block dimension reduction by SO-PLS-DA
soplsqdacv Block dimension reduction by SO-PLS-DA
soplsr Block dimension reduction by SO-PLS
soplsrcv Block dimension reduction by SO-PLS
soplsrda Block dimension reduction by SO-PLS-DA
soplsrdacv Block dimension reduction by SO-PLS-DA
sourcedir Source R functions in a directory
summ Description of the quantitative variables of a data set
summary.Fda Factorial discriminant analysis
summary.Kpca KPCA
summary.Mbplsr multi-block PLSR algorithms
summary.Pca PCA algorithms
summary.Plsr PLSR algorithms
summary.Svm SVM Regression and Discrimination
svmda SVM Regression and Discrimination
svmr SVM Regression and Discrimination

-- T --

transform Generic transform function
transform.Dkpls Direct KPLSR Models
transform.Fda Factorial discriminant analysis
transform.Kpca KPCA
transform.Kplsr KPLSR Models
transform.Mbplsr multi-block PLSR algorithms
transform.Pca PCA algorithms
transform.Plsr PLSR algorithms
transform.Soplsprobda Block dimension reduction by SO-PLS-DA
transform.Soplsr Block dimension reduction by SO-PLS
transform.Soplsrda Block dimension reduction by SO-PLS-DA

-- V --

vip Variable Importance in Projection (VIP)

-- W --

wdist Distance-based weights

-- X --

xfit Matrix fitting from a PCA or PLS model
xfit.Pca Matrix fitting from a PCA or PLS model
xfit.Plsr Matrix fitting from a PCA or PLS model
xresid Matrix fitting from a PCA or PLS model